当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An optimization-based design approach for a novel self-adjuster using shear thickening fluid
Structural and Multidisciplinary Optimization ( IF 3.6 ) Pub Date : 2021-09-06 , DOI: 10.1007/s00158-021-03043-6
P. Nagy-György 1 , J. G. Bene 1 , C. J. Hős 1
Affiliation  

Recently, the increasingly strict safety and emission regulations in the automotive industry drove the interest towards automatic length compensating devices, e.g., hydraulic lash adjusters (lower emission) and slack adjuster in brake systems (faster brake response). These devices have two crucial requirements: (a) be stiff during high load, while (b) be flexible in the released state to compensate for environmental effects such as wear and temperature difference. This study aims to use the advantageous properties of shear thickening fluids to develop a less complicated, cost-efficient design. The proposed design is modeled by a system of ordinary differential equations in which the effect of the non-Newtonian fluid flow is taken into account with a novel, simplified, semi-analytical flow rate-pressure drop relationship suitable for handling arbitrary rheology. The adjuster’s dimensions are determined with a multi-objective genetic algorithm based on the coupled solid-fluid mechanical model for six different shear thickening rheologies. The accuracy of the simplified flow model is verified by means of steady-state and transient CFD simulations for the optimal candidates. We have found that the dominating parameters of such devices are (a) the shear thickening region of the fluid rheology and (b) the gap sizes, while the piston diameters and the zero viscosity or the critical shear rate of the fluid have less effect. Based on the results, we give guidelines to design similar-length compensating devices.



中文翻译:

一种使用剪切稠化液的新型自调节器的优化设计方法

最近,汽车行业日益严格的安全和排放法规推动了人们对自动长度补偿装置的兴趣,例如液压间隙调节器(低排放)和制动系统中的间隙调节器(更快的制动响应)。这些设备有两个关键要求:(a) 在高负载时保持刚性,而 (b) 在释放状态下保持柔韧性,以补偿磨损和温差等环境影响。本研究旨在利用剪切增稠液的优势特性来开发一种不太复杂、具有成本效益的设计。所提出的设计是通过常微分方程系统建模的,其中考虑了非牛顿流体流动的影响,并采用了一种新颖的、简化的、适用于处理任意流变学的半分析流速-压降关系。调节器的尺寸由基于六种不同剪切增稠流变学的耦合固-流力学模型的多目标遗传算法确定。通过最佳候选的稳态和瞬态 CFD 模拟验证了简化流动模型的准确性。我们发现此类装置的主要参数是 (a) 流体流变学的剪切增稠区域和 (b) 间隙尺寸,而活塞直径和零粘度或流体的临界剪切速率影响较小。基于这些结果,我们给出了设计相似长度补偿装置的指南。调节器的尺寸由基于六种不同剪切增稠流变学的耦合固-流力学模型的多目标遗传算法确定。通过最佳候选的稳态和瞬态 CFD 仿真验证了简化流动模型的准确性。我们发现此类装置的主要参数是 (a) 流体流变学的剪切增稠区域和 (b) 间隙尺寸,而活塞直径和零粘度或流体的临界剪切速率影响较小。基于这些结果,我们给出了设计相似长度补偿装置的指南。调节器的尺寸由基于六种不同剪切增稠流变学的耦合固-流力学模型的多目标遗传算法确定。通过最佳候选的稳态和瞬态 CFD 仿真验证了简化流动模型的准确性。我们发现此类装置的主要参数是 (a) 流体流变学的剪切增稠区域和 (b) 间隙尺寸,而活塞直径和零粘度或流体的临界剪切速率影响较小。基于这些结果,我们给出了设计相似长度补偿装置的指南。通过最佳候选的稳态和瞬态 CFD 仿真验证了简化流动模型的准确性。我们发现此类装置的主要参数是 (a) 流体流变学的剪切增稠区域和 (b) 间隙尺寸,而活塞直径和零粘度或流体的临界剪切速率影响较小。基于这些结果,我们给出了设计相似长度补偿装置的指南。通过最佳候选的稳态和瞬态 CFD 仿真验证了简化流动模型的准确性。我们发现此类装置的主要参数是 (a) 流体流变学的剪切增稠区域和 (b) 间隙尺寸,而活塞直径和零粘度或流体的临界剪切速率影响较小。基于这些结果,我们给出了设计相似长度补偿装置的指南。

更新日期:2021-09-06
down
wechat
bug