当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
van der Waals g-C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2021-09-05 , DOI: 10.1021/acs.jpcc.1c05368
Weiwei Jia 1 , Bangfu Ding 1 , Xin Qian 2 , Yanmin Yang 2 , Liang Mao 3 , Xiaoyan Cai 3 , Shaoqiang Guo 4 , Junying Zhang 5
Affiliation  

Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.

中文翻译:

van der Waals g-C3N4/BiLuWO6 异质结从理论预测到光催化应用

异质结在提高材料的光催化性能方面起着重要作用。在本文中,范德华gC 3 N 4 /BiLuWO 6异质结通过层间结合能、能带、功函数和电荷密度差计算形成Z-scheme能带构型。光生电子从 gC 3 N 4的导带 (CB) 转移到BiLuWO 6的价带 (VB). 基于理论预测,合成了 13 个异质结,并通过 X 射线衍射 (XRD)、透射电子显微镜 (TEM)、能量色散光谱 (EDS) 映射、X 射线光电子能谱 (XPS) 和拉曼光谱表征。光电流响应、阻抗、莫特-肖特基曲线和自由基测试进一步证实了 n 型 gC 3 N 4 /BiLuWO 6异质结中光生载流子的快速分离。在汞灯照射下,罗丹明 B (RhB) 和亚甲蓝 (MB) 的降解效率分别为 93% 和 85%。gC 3 N 4的值高于 50% 和 64 %,BiLuWO 6的值高于14% 和 8%. 除污染物降解外,使用氙灯照射异质结的H 2析出率为289.08 μmol/g/h,高于gC 3 N 4的161.08 μmol/g/h和BiLuWO 6 的13.13 μmol/g/h . 通过高效液相色谱-质谱 (HPLC-MS) 和吉布斯自由能分析揭示了RhB 的分解路径和 H 2生产活性的改进机制。
更新日期:2021-09-16
down
wechat
bug