当前位置: X-MOL 学术Opt. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust method of determining microfacet BRDF parameters in the presence of noise via recursive optimization
Optical Engineering ( IF 1.1 ) Pub Date : 2021-09-01 , DOI: 10.1117/1.oe.60.9.094103
Michael W. Bishop 1 , Samuel D. Butler 1 , Michael A. Marciniak 1
Affiliation  

Accurate bidirectional reflectance distribution function (BRDF) models are essential for computer graphics and remote sensing performance. The popular microfacet class of BRDF models is geometric-optics-based and computationally inexpensive. Fitting microfacet models to scatterometry measurements is a common yet challenging requirement that can result in a model being fit as one of several unique local minima. Final model fit accuracy is therefore largely based on the quality of the initial parameter estimate. This makes for widely varying material parameter estimates and causes inconsistent performance comparisons across microfacet models, as will be shown with synthetic data. We proposed a recursive optimization method for accurate parameter determination. This method establishes an array of local minima best fits by initializing a fixed number of parameter conditions that span the parameter space. The identified solution associated with the best fit quality is extracted from the local array and stored as the relative global best fit. This method is first applied successfully to synthetic data, then it is applied to several materials and several illumination wavelengths. This method proves to reduce manual parameter adjustments, is equally weighted across incident angles, helps define parameter stability within a model, and consistently improves fit quality over the high-error local minimum best fit from lsqcurvefit by an average of 71%.

中文翻译:

在存在噪声的情况下通过递归优化确定微面 BRDF 参数的稳健方法

准确的双向反射分布函数 (BRDF) 模型对于计算机图形和遥感性能至关重要。BRDF 模型的流行 microfacet 类基于几何光学且计算成本低。将微面模型拟合到散射测量是一项常见但具有挑战性的要求,它可能导致模型被拟合为几个独特的局部最小值之一。因此,最终模型拟合精度很大程度上取决于初始参数估计的质量。这会导致材料参数估计差异很大,并导致不同微平面模型的性能比较不一致,如合成数据所示。我们提出了一种用于精确参数确定的递归优化方法。此方法通过初始化跨越参数空间的固定数量的参数条件来建立局部最小值最佳拟合的数组。从局部数组中提取与最佳拟合质量相关联的已识别解决方案,并将其存储为相对全局最佳拟合。该方法首先成功应用于合成数据,然后应用于多种材料和多种照明波长。事实证明,这种方法可以减少手动参数调整,在入射角上具有相同的权重,有助于定义模型内的参数稳定性,并且与 lsqcurvefit 的高误差局部最小最佳拟合相比,拟合质量持续平均提高 71%。从局部数组中提取与最佳拟合质量相关联的已识别解决方案,并将其存储为相对全局最佳拟合。该方法首先成功应用于合成数据,然后应用于多种材料和多种照明波长。事实证明,这种方法可以减少手动参数调整,在入射角上具有相同的权重,有助于定义模型内的参数稳定性,并且与 lsqcurvefit 的高误差局部最小最佳拟合相比,拟合质量持续平均提高 71%。从局部数组中提取与最佳拟合质量相关联的已识别解决方案,并将其存储为相对全局最佳拟合。该方法首先成功应用于合成数据,然后应用于多种材料和多种照明波长。事实证明,这种方法可以减少手动参数调整,在入射角上具有相同的权重,有助于定义模型内的参数稳定性,并且与 lsqcurvefit 的高误差局部最小最佳拟合相比,拟合质量持续平均提高 71%。
更新日期:2021-09-06
down
wechat
bug