当前位置: X-MOL 学术Anal. Chim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting ion mobility as a function of the electric field for small ions in light gases
Analytica Chimica Acta ( IF 5.7 ) Pub Date : 2021-09-06 , DOI: 10.1016/j.aca.2021.339019
Viraj D Gandhi 1 , Carlos Larriba-Andaluz 2
Affiliation  

High resolution mobility devices such as Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility spectrometers (DMS) use strong electric fields to gas concentration ratios, E/N, to separate ions in the gas phase. While extremely successful, their empirical results show a non-linear, ion-dependent relation between mobility K and E/N that is difficult to characterize. The one-temperature theory Mason-Schamp equation, which is the most widely used ion mobility equation, unfortunately, cannot capture this behavior. When the two-temperature theory is used, it can be shown that the KE/N behavior can be followed quite closely numerically by equating the effect of increasing the field to an increase in the ion temperature. This is attempted here for small ions in a Helium gas environment showing good agreement over the whole field range. To improve the numerical characterization, the Lennard-Jones (L-J) potentials may be optimized. This is attempted for Carbon, Hydrogen, Oxygen and Nitrogen at different degrees of theory up to the fourth approximation, which is assumed to be exact. The optimization of L-J improves the accuracy yielding errors of about 3% on average. The fact that a constant set of L-J potentials work for the whole range of E/N and for several molecules, also suggests that inelastic collisions can be circumvented in calculations for He. The peculiar KE/N hump behaviors are studied, and whether mobility increases or decreases with E/N is shown to derive from a competition between relative kinetic energy and the interaction potentials.



中文翻译:

预测离子迁移率作为轻气体中小离子的电场函数

场不对称波形离子迁移谱 (FAIMS) 和微分迁移谱仪 (DMS) 等高分辨率迁移设备使用强电场与气体浓度比, /N, 以分离气相中的离子。虽然非常成功,但他们的经验结果表明迁移率之间存在非线性、离子依赖关系。/N这很难定性。不幸的是,单温度理论 Mason-Schamp 方程是最广泛使用的离子迁移方程,但无法捕捉到这种行为。当使用双温度理论时,可以证明-/N通过将增加场的影响等同于增加离子温度,可以在数值上非常接近地遵循行为。此处尝试针对氦气环境中的小离子在整个场范围内表现出良好的一致性。为了改进数值表征,可以优化 Lennard-Jones (LJ) 势。这是针对碳、氢、氧和氮以不同程度的理论尝试的,直到第四个近似值,假设是精确的。LJ 的优化提高了精度,平均产生了约 3% 的误差。一组恒定的 LJ 势在整个范围内起作用的事实/N对于几个分子,也表明在计算 He 时可以规避非弹性碰撞。奇特的-/N 研究驼峰行为,以及流动性是增加还是减少 /N 显示来自相对动能和相互作用势之间的竞争。

更新日期:2021-09-13
down
wechat
bug