当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen vacancies-enriched Mn3O4 enabling high-performance rechargeable aqueous zinc-ion battery
Materials Today Physics ( IF 10.0 ) Pub Date : 2021-09-04 , DOI: 10.1016/j.mtphys.2021.100518
Can Huang 1 , Qiufan Wang 1 , Guofu Tian 1 , Daohong Zhang 1
Affiliation  

The development of high-energy cathode for rechargeable aqueous zinc-ion batteries (ZIBs) is highly attractive. However, the disproportionation effect of Mn2+ seriously affects the capacity retention of ZIBs during cycling. Defect engineering provides efficient methods to enhance conductivity and structural stability of active materials. Here, a novel in situ generated bulk oxygen deficient Mn3O4 nanoframes cathode for rechargeable aqueous ZIBs is reported, with high capacity and good electrochemical stability. The oxygen-deficient Mn3O4 spheres display an excellent gravimetric capacity of 325.4 mAh g−1 and a high energy density of 423 Wh kg−1 at a power density of 2257.2 W kg−1. Ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterization demonstrate the initial Mn3O4 is converted to ramsdellite MnO2 for insertion and extraction of H+ and Zn2+. Theoretical modeling reveal that numerous edge sites and oxygen vacancies act as preferential intercalation sites for the zinc ions, leading to a much greater capacity than that of defect-free Mn3O4. These results highlight the potentials of defect engineering as a strategy of improving the electrochemical performance of Mn3O4 in aqueous rechargeable batteries.



中文翻译:

富含氧空位的 Mn3O4 使高性能可充电水性锌离子电池成为可能

用于可充电水性锌离子电池(ZIB)的高能正极的开发极具吸引力。然而,Mn 2+的歧化效应严重影响了ZIBs在循环过程中的容量保持率。缺陷工程为提高活性材料的导电性和结构稳定性提供了有效的方法。在这里,报道了一种用于可充电水性 ZIBs的新型原位生成的块状缺氧 Mn 3 O 4纳米框架阴极,具有高容量和良好的电化学稳定性。缺氧的 Mn 3 O 4球体显示出 325.4 mAh g -1的优异重量容量和 423 Wh kg -1的高能量密度功率密度为 2257.2 W kg -1异位X 射线衍射 (XRD) 和 X 射线光电子能谱 (XPS) 表征证明初始 Mn 3 O 4转化为斜方锰矿 MnO 2以插入和提取 H +和 Zn 2+。理论模型表明,许多边缘位点和氧空位作为锌离子的优先嵌入位点,导致比无缺陷 Mn 3 O 4 的容量大得多的容量。这些结果突出了缺陷工程作为提高 Mn 3 O 4电化学性能策略的潜力 在水性可充电电池中。

更新日期:2021-09-09
down
wechat
bug