当前位置: X-MOL 学术Int. J. of Precis. Eng. and Manuf.-Green Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards Green 3D-Microfabrication of Bio-MEMS Devices Using ADEX Dry Film Photoresists
International Journal of Precision Engineering and Manufacturing-Green Technology ( IF 5.3 ) Pub Date : 2021-09-03 , DOI: 10.1007/s40684-021-00367-y
Michael M. Roos 1 , Madeleine Nilsen 1 , Andreas Winkler 2 , Siegfried B. Menzel 2 , Steffen Strehle 3
Affiliation  

Current trends in miniaturized diagnostics indicate an increasing demand for large quantities of mobile devices for health monitoring and point-of-care diagnostics. This comes along with a need for rapid but preferably also green microfabrication. Dry film photoresists (DFPs) promise low-cost and greener microfabrication and can partly or fully replace conventional silicon-technologies being associated with high-energy demands and the intense use of toxic and climate-active chemicals. Due to their mechanical stability and superior film thickness homogeneity, DFPs outperform conventional spin-on photoresists, such as SU-8, especially when three-dimensional architectures are required for micro-analytical devices (e.g. microfluidics). In this study, we utilize the commercial epoxy-based DFP ADEX to demonstrate various application scenarios ranging from the direct modification of microcantilever beams via the assembly of microfluidic channels to lamination-free patterning of DFPs, which employs the DFP directly as a substrate material. Finally, kinked, bottom-up grown silicon nanowires were integrated in this manner as prospective ion-sensitive field-effect transistors in a bio-probe architecture directly on ADEX substrates. Hence, we have developed the required set of microfabrication protocols for such an assembly comprising metal thin film deposition, direct burn-in of lithography alignment markers, and polymer patterning on top of the DFP.



中文翻译:

使用 ADEX 干膜光刻胶实现生物 MEMS 器件的绿色 3D 微制造

小型化诊断的当前趋势表明,对用于健康监测和即时诊断的大量移动设备的需求不断增加。这伴随着对快速但最好也是绿色微制造的需求。干膜光刻胶 (DFP) 有望实现低成本和更环保的微制造,并且可以部分或完全取代传统的硅技术,这些技术与高能量需求和大量使用有毒和气候活性化学品有关。由于其机械稳定性和优异的膜厚均匀性,DFP 的性能优于传统的旋涂光刻胶,如 SU-8,尤其是当微分析设备(如微流体)需要三维结构时。在这项研究中,我们利用商用环氧树脂 DFP ADEX 来演示各种应用场景,从通过微流体通道组装直接修改微悬臂梁到 DFP 的无层压图案化,DFP 直接采用 DFP 作为基板材料。最后,以这种方式将扭结的、自下而上生长的硅纳米线作为预期的离子敏感场效应晶体管直接集成在 ADEX 基板上的生物探针结构中。因此,我们为这样的组件开发了一套所需的微加工协议,包括金属薄膜沉积、光刻对准标记的直接老化以及 DFP 顶部的聚合物图案化。它直接使用 DFP 作为基板材料。最后,以这种方式将扭结的、自下而上生长的硅纳米线作为预期的离子敏感场效应晶体管直接集成在 ADEX 基板上的生物探针结构中。因此,我们为这样的组件开发了一套所需的微加工协议,包括金属薄膜沉积、光刻对准标记的直接老化以及 DFP 顶部的聚合物图案化。它直接使用 DFP 作为基板材料。最后,以这种方式将扭结的、自下而上生长的硅纳米线作为预期的离子敏感场效应晶体管直接集成在 ADEX 基板上的生物探针结构中。因此,我们为这样的组件开发了一套所需的微加工协议,包括金属薄膜沉积、光刻对准标记的直接老化以及 DFP 顶部的聚合物图案化。

更新日期:2021-09-04
down
wechat
bug