当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nested hollow architectures of nitrogen-doped carbon-decorated Fe, Co, Ni-based phosphides for boosting water and urea electrolysis
Nano Research ( IF 9.9 ) Pub Date : 2021-09-02 , DOI: 10.1007/s12274-021-3810-4
Jie Zhang 1 , Shoushuang Huang 1 , Ping Ning 1 , Peijun Xin 1 , Zhiwen Chen 1 , Qing Wang 1 , Zhangjun Hu 1, 2 , Kajsa Uvdal 2
Affiliation  

Tailoring the nanostructure/morphology and chemical composition is important to regulate the electronic configuration of electrocatalysts and thus enhance their performance for water and urea electrolysis. Herein, the nitrogen-doped carbon-decorated tricomponent metal phosphides of FeP4 nanotube@Ni-Co-P nanocage (NC-FNCP) with unique nested hollow architectures are fabricated by a self-sacrifice template strategy. Benefiting from the multi-component synergy, the modification of nitrogen-doped carbon, and the modulation of nested porous hollow morphology, NC-FNCP facilitates rapid electron/mass transport in water and urea electrolysis. NC-FNCP-based anode shows low potentials of 248 mV and 1.37 V (vs. reversible hydrogen electrode) to attain 10 mA/cm2 for oxygen evolution reaction (OER) and urea oxidation reaction (UOR), respectively. In addition, the overall urea electrolysis drives 10 mA/cm2 at a comparatively low voltage of 1.52 V (vs. RHE) that is 110 mV lower than that of overall water electrolysis, as well as exhibits excellent stability over 20 h. This work strategizes a multi-shell-structured electrocatalyst with multi-compositions and explores its applications in a sustainable combination of hydrogen production and sewage remediation.



中文翻译:

用于促进水和尿素电解的氮掺杂碳装饰的 Fe、Co、Ni 基磷化物的嵌套空心结构

调整纳米结构/形态和化学成分对于调节电催化剂的电子构型很重要,从而提高它们对水和尿素电解的性能。在此,具有独特嵌套空心结构的 FeP 4纳米管@Ni-Co-P 纳米笼(NC-FNCP)的氮掺杂碳装饰三组分金属磷化物是通过自我牺牲模板策略制造的。受益于多组分协同作用、氮掺杂碳的改性以及嵌套多孔空心形态的调节,NC-FNCP 促进了水和尿素电解中的快速电子/质量传输。基于 NC-FNCP 的阳极显示出 248 mV 和 1.37 V(相对于可逆氢电极)的低电位,以达到 10 mA/cm 2分别用于析氧反应(OER)和尿素氧化反应(UOR)。此外,整体尿素电解在 1.52 V (vs. RHE) 的相对低电压下驱动 10 mA/cm 2,比整体水电解低 110 mV,并且在 20 小时内表现出优异的稳定性。这项工作对具有多种成分的多壳结构电催化剂进行了策略化,并探索了其在制氢和污水修复的可持续组合中的应用。

更新日期:2021-09-04
down
wechat
bug