当前位置: X-MOL 学术ACS Macro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity
ACS Macro Letters ( IF 5.1 ) Pub Date : 2021-09-03 , DOI: 10.1021/acsmacrolett.1c00500
Janet Y Sheung 1 , Daisy H Achiriloaie 1 , Christopher Currie 2 , Karthik Peddireddy 2 , Aaron Xie 1 , Jessalyn Simon-Parker 1 , Gloria Lee 2 , Michael J Rust 3 , Moumita Das 4 , Jennifer L Ross 5 , Rae M Robertson-Anderson 2
Affiliation  

The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.

中文翻译:

细胞骨架复合材料的电机驱动重组导致可调时变弹性

复合细胞骨架由半柔性肌动蛋白和刚性微管的相互作用网络组成,通过使用肌球蛋白等运动蛋白产生力和重组,以实现包括细胞运动和有丝分裂在内的关键过程。然而,电机驱动的活动如何改变细胞骨架复合材料的力学仍然是一个开放的挑战。在这里,我们对具有不同肌动蛋白-微管蛋白摩尔百分比(25-75、50-50 和 75-25)的复合材料进行光学镊子微流变学和共聚焦成像,由光激活肌球蛋白 II 电机驱动,以表明运动活动增加通过在运动激活停止后持续数小时的肌动蛋白和微管的主动重组,弹性平台模量提高了 2 个数量级以上。非线性微流变测量表明,电机驱动的重组增加了力响应和刚度,并抑制了肌动蛋白弯曲。50-50 复合材料对运动活动表现出最显着的机械响应,这是由于微管增加的刚度和足够的运动底物具有显着活动的协同效应。
更新日期:2021-09-21
down
wechat
bug