当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of shock vector/polarization vector configuration on the generation of ultrahigh voltage by adiabatically compressed ferroelectric materials
Applied Physics Letters ( IF 3.5 ) Pub Date : 2021-08-30 , DOI: 10.1063/5.0064562
Sergey I. Shkuratov 1 , Jason Baird 1, 2 , Vladimir G. Antipov 1
Affiliation  

Compact autonomous megawatt-power systems based on shock depolarization of ferroelectric materials are capable of producing kiloampere currents and ultrahigh-voltage pulses with amplitudes exceeding 100 kV. Herein, we report the results of experimental investigations of the generation of ultrahigh voltage by poled Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 and Pb0.99(Zr0.52Ti0.48)0.98Nb0.01O3 ferroelectrics subjected to shock loading at different shock vector/polarization vector configurations. Our experiments demonstrated that under loading perpendicular to the polarization vector (transverse stress mode) the ferroelectrics are capable of generating high voltages exceeding 400 kV, while the loading parallel to the polarization vector (longitudinal stress mode) causes a distortion of the depolarization process in ferroelectrics of large thicknesses, resulting in inefficient generation of ultrahigh voltage. It was shown that for transverse semi-planar shock waves, the presence of the longitudinal component of stress due to non-perfect planarity of the shock front can cause a complex electric field distribution in the shock front area, resulting in energy losses in ferroelectrics operating in the ultrahigh-voltage mode. The important finding is that a cylindrical, radially expanding shock wave results in no significant distortion of the depolarization process and energy losses during ultrahigh-voltage generation by transversely shock-compressed ferroelectrics. The experimental results indicate that the voltage amplitude generated by transversely shock-compressed ferroelectrics is directly proportional to the ferroelectric thickness in the range from 6 to 230 mm. We found that over the full range of investigated thicknesses the breakdown-field-on-thickness dependence of shocked ferroelectrics is described by a power law and the mechanism of initiation of electric breakdown does not significantly change with ferroelectric thickness.

中文翻译:

激波矢量/极化矢量配置对绝热压缩铁电材料产生超高电压的影响

基于铁电材料冲击去极化的紧凑型自主兆瓦电力系统能够产生千安级电流和幅度超过 100 kV 的超高压脉冲。在此,我们通过极化铅报告超高电压的产生的实验研究的结果0.99(锆0.95的Ti 0.050.98 Nb的0.02 ö 3和Pb 0.99(锆0.52的Ti 0.480.98 Nb的0.01 ö 3铁电体在不同的冲击矢量/极化矢量配置下受到冲击载荷。我们的实验表明,在垂直于极化矢量(横向应力模式)的加载下,铁电体能够产生超过 400 kV 的高压,而平行于极化矢量(纵向应力模式)的加载会导致铁电体中去极化过程的畸变厚度大,导致超高电压产生效率低下。结果表明,对于横向半平面激波,由于激波前沿的非完美平面性所导致的纵向应力分量的存在会导致激波前沿区域出现复杂的电场分布,从而导致铁电体工作中的能量损失。在超高压模式下。重要的发现是,在横向冲击压缩铁电体产生超高压期间,圆柱形径向膨胀冲击波不会导致去极化过程的显着失真和能量损失。实验结果表明,横向冲击压缩铁电体产生的电压幅值与铁电体厚度在 6 至 230 mm 范围内成正比。我们发现在整个研究厚度范围内,冲击铁电体的击穿场对厚度的依赖性由幂律描述,并且电击穿的引发机制不随铁电体厚度发生显着变化。径向膨胀的冲击波在横向冲击压缩铁电体产生超高压期间不会导致去极化过程的显着失真和能量损失。实验结果表明,横向冲击压缩铁电体产生的电压幅值与铁电体厚度在 6 至 230 mm 范围内成正比。我们发现在整个研究厚度范围内,冲击铁电体的击穿场对厚度的依赖性由幂律描述,并且电击穿的引发机制不随铁电体厚度发生显着变化。径向膨胀的冲击波在横向冲击压缩铁电体产生超高压期间不会导致去极化过程的显着失真和能量损失。实验结果表明,横向冲击压缩铁电体产生的电压幅值与铁电体厚度在 6 至 230 mm 范围内成正比。我们发现在整个研究厚度范围内,冲击铁电体的击穿场对厚度的依赖性由幂律描述,并且电击穿的引发机制不随铁电体厚度发生显着变化。实验结果表明,横向冲击压缩铁电体产生的电压幅值与铁电体厚度在 6 至 230 mm 范围内成正比。我们发现在整个研究厚度范围内,冲击铁电体的击穿场对厚度的依赖性由幂律描述,并且电击穿的引发机制不随铁电体厚度发生显着变化。实验结果表明,横向冲击压缩铁电体产生的电压幅值与铁电体厚度在 6 至 230 mm 范围内成正比。我们发现在整个研究厚度范围内,冲击铁电体的击穿场对厚度的依赖性由幂律描述,并且电击穿的引发机制不随铁电体厚度发生显着变化。
更新日期:2021-09-03
down
wechat
bug