当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional (3D), macroporous, elastic, and biodegradable nanocomposite scaffold for in situ bone regeneration: Toward structural, biophysical, and biochemical cues integration
Composites Part B: Engineering ( IF 13.1 ) Pub Date : 2021-09-02 , DOI: 10.1016/j.compositesb.2021.109270
Yuzhang Du 1 , Meng Yu 2 , Wenxuan Lu 1 , Jie Kong 1
Affiliation  

Although bone tissue with remarkable healing capabilities, the rapid and successful bone regeneration continues to present a challenge because that the influence factors for bone healing are multifaceted, especially for massive bone defects. From a cell/material interactions point of view, integrating multiple cues into one biomaterial is considered as a promising approach in the clinical treatment of bone defects thanks to the provided multiple stimuli. Herein, 3D macroporously elastic biodegradable nanocomposite bone scaffolds (PCSG) were successfully developed based on poly(citrate-siloxane) (PCS) hybrid elastomer and reduced graphene oxide (rGO). The PCSG scaffolds combine with structure (3D, largely open and interconnected pore architecture, high porosity), biophysics (high mechanical properties, roughness surface, piezoelectricity property), and biochemistry cues (silica cross-linked network, Si ions release). Experiments demonstrate that the structurally, biophysically, and biochemically biomimetic properties of PCSG scaffolds are beneficial for triggering cell adhesion, proliferation, matrix mineralization, osteogenic differentiation of osteoblasts (MC3T3-E1) in vitro and significantly promoting in situ bone regeneration in a calvarial bone defect model. The effective and simple strategy of multiple cues integration could pave a universally applicable way in development of bone tissue engineering biomaterials with good osteoinductivity and osteoconductivity for large defects repair, and the reported PCSG scaffolds demonstrate the potential clinic application in fields of bone regeneration and 3D culture of cells.



中文翻译:

用于原位骨再生的三维 (3D)、大孔、弹性和可生物降解纳米复合支架:走向结构、生物物理和生化线索的整合

尽管骨组织具有显着的愈合能力,但快速成功的骨再生仍然是一个挑战,因为影响骨愈合的因素是多方面的,尤其是对于大量骨缺损。从细胞/材料相互作用的角度来看,由于提供了多种刺激,将多种线索整合到一种生物材料中被认为是骨缺损临床治疗的一种有前途的方法。在此,基于聚(柠檬酸-硅氧烷)(PCS)混合弹性体和还原氧化石墨烯(rGO)成功开发了 3D 大孔弹性可生物降解纳米复合骨支架(PCSG)。PCSG 支架结合了结构(3D、大体开放和互连的孔隙结构、高孔隙率)、生物物理学(高机械性能、粗糙表面、压电性能)、和生物化学线索(二氧化硅交联网络,Si 离子释放)。实验表明,PCSG 支架的结构、生物物理和生物化学仿生特性有利于触发细胞粘附、增殖、基质矿化、成骨细胞的成骨分化 (MC3T3-E1)在体外并显着促进颅骨骨缺损模型中的原位骨再生。多线索整合的有效且简单的策略可以为开发具有良好骨诱导性和骨传导性用于大缺损修复的骨组织工程生物材料铺平道路,报道的 PCSG 支架证明了在骨再生和 3D 培养领域的潜在临床应用细胞。

更新日期:2021-09-06
down
wechat
bug