当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments
Biophysical Journal ( IF 3.2 ) Pub Date : 2021-09-02 , DOI: 10.1016/j.bpj.2021.08.040
Shiying Zhu 1 , Ehsan Kachooei 2 , Jeffrey R Harmer 3 , Louise J Brown 2 , Frances Separovic 1 , Marc-Antoine Sani 1
Affiliation  

The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.



中文翻译:

为脂质膜环境中的 DNP-NMR 研究量身定制的 TOAC 自旋标记肽

将细胞内固态动态核极化 (DNP) NMR 和低温相结合的好处是通过低温保护提供足够的信号/噪声和保持细菌完整性,从而能够对抗菌肽进行原位生物物理研究。通过添加基于抗菌肽 maculatin 1.1 (Mac1) 的氮氧化物标记肽,将 DNP 所需的自由基源递送到细胞中。在本研究中,单 (T-MacW) 和双 (TT-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-) 的结构、定位和信号增强特性羧酸)自旋标记的 Mac1 类似物在胶束或脂质囊泡中测定。溶液核磁共振和圆二色性结果表明,自旋标记的肽与胶束接触时采用螺旋结构。在多层囊泡存在下,肽表现为孤立的自由基源,双自旋标记肽的电子顺磁共振 (EPR) 电子-电子距离约为 1 nm。对于甘油-羰基骨架附近的脂质核磁共振信号,观察到最强的顺磁弛豫增强 (PRE),对于双自旋标记的肽则更强。磷脂双层中 TT-MacW 自由基源的分子动力学模拟支持 EPR 和 PRE 观察,同时提供进一步的结构见解。总体而言,TT-MacW 肽取得了更好的效果 对于甘油-羰基骨架附近的脂质核磁共振信号,观察到最强的顺磁弛豫增强 (PRE),对于双自旋标记的肽则更强。磷脂双层中 TT-MacW 自由基源的分子动力学模拟支持 EPR 和 PRE 观察,同时提供进一步的结构见解。总体而言,TT-MacW 肽取得了更好的效果 对于甘油-羰基骨架附近的脂质核磁共振信号,观察到最强的顺磁弛豫增强 (PRE),对于双自旋标记的肽则更强。磷脂双层中 TT-MacW 自由基源的分子动力学模拟支持 EPR 和 PRE 观察,同时提供进一步的结构见解。总体而言,TT-MacW 肽取得了更好的效果13 C 和15 N 信号 NMR 增强和1 H 自旋晶格 T 1弛豫比 T-MacW。

更新日期:2021-10-19
down
wechat
bug