当前位置: X-MOL 学术Coord. Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production
Coordination Chemistry Reviews ( IF 20.6 ) Pub Date : 2021-09-01 , DOI: 10.1016/j.ccr.2021.214172
Juan Amaro-Gahete 1 , Mariia V. Pavliuk 2 , Haining Tian 2 , Dolores Esquivel 1 , Francisco J. Romero-Salguero 1 , Sascha Ott 2
Affiliation  

A global hydrogen economy could ensure environmentally sustainable, safe and cost-efficient renewable energy for the 21st century. Solar hydrogen production through artificial photosynthesis is a key strategy, and the activity of natural hydrogenase metalloenzymes an inspiration for the design of synthetic catalyst systems.

[FeFe]-hydrogenase enzymes, present in anaerobic bacteria and green algae, are the most efficient class of biological catalysts for hydrogen evolution. The enzymes operate in an aqueous environment, utilizing electrons that ultimately stem from photosynthesis as the only energy source. Functional synthetic models of the [FeFe]-hydrogenase enzyme active site have garnered intense interest as potential catalysts for the reduction of protons to molecular hydrogen.

Herein, we take an extensive journey through the field of biomimetic hydrogenase chemistry for light-driven hydrogen production. We open with a brief presentation of the structure and redox mechanism of the natural enzyme. Synthetic methodologies, structural characteristics, and hydrogen generation metrics relevant to the synthetic diiron catalysts ([2Fe2S]) are discussed. We first examine multi-component photocatalysis systems with the [2Fe2S] cluster, followed by photosensitizer-[2Fe2S] dyads and molecular triads. Finally, strategies for the incorporation of [2Fe2S] complexes into supramolecular assemblies, semiconductor supports, and hybrid heterogeneous platforms are laid out. We analyze the individual properties, scope, and limitations of the components present in the photocatalytic reactions. This review illuminates the most useful aspects to rationally design a wide variety of biomimetic catalysts inspired by the diiron subsite of [FeFe]-hydrogenases, and establishes design features shared by the most stable and efficient hydrogen producing photosystems.



中文翻译:

模拟[FeFe]-氢化酶活性位点的催化系统,用于可见光驱动的制氢

全球氢经济可以确保 21 世纪环境可持续、安全和具有成本效益的可再生能源。通过人工光合作用生产太阳能是一个关键策略,天然氢化酶金属酶的活性为合成催化剂系统的设计提供了灵感。

[FeFe]-氢化酶存在于厌氧细菌和绿藻中,是最有效的一类用于析氢的生物催化剂。这些酶在水性环境中运作,利用最终来自光合作用的电子作为唯一的能源。[FeFe]-氢化酶活性位点的功能合成模型作为将质子还原为分子氢的潜在催化剂引起了人们的强烈兴趣。

在此,我们在光驱动制氢的仿生氢化酶化学领域进行了广泛的探索。我们首先简要介绍天然酶的结构和氧化还原机制。讨论了与合成二铁催化剂 ([2Fe2S]) 相关的合成方法、结构特征和氢气生成指标。我们首先检查具有 [2Fe2S] 簇的多组分光催化系统,然后是光敏剂-[2Fe2S] 二元组和分子三元组。最后,阐述了将 [2Fe2S] 复合物纳入超分子组装、半导体支撑和混合异质平台的策略。我们分析了光催化反应中存在的组分的个别特性、范围和局限性。

更新日期:2021-09-02
down
wechat
bug