当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrate Risk Management in Gas Transmission Lines
Energy & Fuels ( IF 5.3 ) Pub Date : 2021-09-02 , DOI: 10.1021/acs.energyfuels.1c01853
Zachary M. Aman 1
Affiliation  

Gas hydrates are ice-like solids that can readily form and restrict flow in high-pressure natural gas transmission lines. The use of antifreeze thermodynamic inhibitors dominated production systems throughout the 20th century, where most research necessarily focused on measuring and predicting the hydrate phase boundary. In the 21st century, market competitiveness and environmental constraints have motivated a paradigm shift toward the identification and management of hydrate blockage risks, which has largely been facilitated to date through two research efforts: establishing and continuously refining mechanistic models to predict hydrate blockage formation; and exploiting critical stages within that blockage mechanism to develop novel, environmentally compatible inhibitors. This review presents a historical perspective on the development of an oil-dominant blockage mechanism and the technologies enabled by these efforts. Efforts over the past decade—made possible through the collaboration between industry, the Australian government, and academia—are then summarized in the context of producing the first mechanistic blockage model for gas-dominant transmission lines, including the role of innovative high-pressure pilot-scale flowloop systems. Together, these blockage mechanisms have enabled new opportunities to develop and deploy low-dosage hydrate inhibitors—including the creation of new experimental capabilities that can be used to quantify occurrence probability or severity and the transient simulation tools that can leverage such knowledge—that support the ability to quantitatively manage hydrate blockage risk in hydrocarbon transmission lines. As they offer superior resolution in performance assessment to first-generation approaches, these new experimental methods offer structure–function design and optimization of low-dosage inhibitors against secondary, environmental parameters.

中文翻译:

输气管线中的水合物风险管理

天然气水合物是冰状固体,很容易在高压天然气输送管线中形成并限制其流动。在整个 20 世纪,防冻热力学抑制剂的使用主导了生产系统,其中大多数研究必然集中在测量和预测水合物相边界上。进入 21 世纪,市场竞争和环境约束推动了识别和管理水合物堵塞风险的范式转变,迄今为止,这主要通过两项研究工作得到促进:建立并不断完善预测水合物堵塞形成的机制模型;并利用该阻塞机制中的关键阶段来开发新型的、环境相容的抑制剂。本综述从历史角度介绍了以石油为主的堵塞机制的发展以及这些努力所支持的技术。通过工业、澳大利亚政府和学术界之间的合作,过去十年的努力在为以天然气为主的输电线路生产第一个机械堵塞模型的背景下进行了总结,包括创新高压导阀的作用- 规模的流动回路系统。一起,这些阻塞机制为开发和部署低剂量水合物抑制剂提供了新的机会——包括创建可用于量化发生概率或严重性的新实验能力,以及可以利用这些知识的瞬态模拟工具——支持以下能力:定量管理碳氢化合物输送管线中的水合物堵塞风险。由于它们在性能评估中为第一代方法提供了卓越的分辨率,因此这些新的实验方法提供了结构-功能设计和针对次要环境参数的低剂量抑制剂的优化。
更新日期:2021-09-16
down
wechat
bug