当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gradient valence-distributed vanadium oxygen hydrate hybrid induces high performance aqueous zinc-ion batteries
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2021-08-16 , DOI: 10.1039/d1qm00703c
Jun Zhang 1 , Mingshan Wang 1, 2 , Jialun Zhong 1 , Xu Wang 1 , Xuezhen Huang 1 , Zhenliang Yang 3 , Junchen Chen 1 , Bingshu Guo 1 , Zhiyuan Ma 1 , Xing Li 1, 2
Affiliation  

Gradient valence-distributed vanadium oxygen hydrate hybrid (G-VOH) nanowires are designed by one-step hydrothermal synthesis for aqueous zinc-ion batteries. It is mainly constructed by superficial NH4+-intercalated VOH ((NH4)2V10O25·8H2O, named as NVOH) and inner deeper vanadium reduction VOH (V3O7·H2O, named as VOH). In the unique nanostructure, both NVOH and VOH are active matrices involved in the Zn2+ electrochemical reaction. Moreover, the outer NVOH functions as a Zn2+ transport framework to provide fast Zn2+ transport capability for the inner VOH. Additionally, the gradient vanadium valence distribution in hybrids enhances the vanadium multi-valence redox kinetics, resulting in significant improvement for the Zn2+ storage capacity. Meanwhile, NVOH also functions as a framework support to suppress the inner VOH crystal structure conversion during the charge/discharge process, facilitating its electrochemical stability. Thus, the G-VOH nanowires obtain a high specific capacity of 434 mA h g−1 at 0.1 A g−1, as well as long cycling stability with 86% capacity retention at 2 A g−1 after 1500 cycles. Moreover, the assembled quasi-solid-state G-VOH||Zn batteries achieve a superior specific capacity of 241 mA h g−1 at 1 A g−1 with a capacity retention of 74% after 500 cycles. The strategy of the preparation of gradient valence-distributed vanadium oxygen hydrate provides a new idea for the development of cathode materials for aqueous zinc-ion batteries.

中文翻译:

梯度价分布的钒氧水合物杂化诱导高性能水系锌离子电池

梯度价分布的钒氧水合物杂化(G-VOH)纳米线是通过一步水热合成为水性锌离子电池设计的。它主要由表面NH 4 + -插入的VOH((NH 4 ) 2 V 10 O 25 ·8H 2 O,命名为NVOH)和内部更深的钒还原VOH(V 3 O 7 ·H 2 O,命名为VOH)构成)。在独特的纳米结构中,NVOH 和 VOH 都是参与 Zn 2+电化学反应的活性基质。此外,外部 NVOH 作为 Zn 2+传输框架,提供快速的 Zn 2+内部 VOH 的传输能力。此外,杂化物中的梯度钒价分布增强了钒多价氧化还原动力学,从而显着提高了 Zn 2+存储容量。同时,NVOH还起到骨架支撑的作用,在充放电过程中抑制内部VOH晶体结构的转换,有利于其电化学稳定性。因此,G-VOH 纳米线在 0.1 A g -1 时获得了 434 mA hg -1的高比容量,以及在 1500 次循环后在 2 A g -1 时具有 86% 容量保持率的长循环稳定性。此外,组装的准固态 G-VOH||Zn 电池实现了 241 mA hg -1的优异比容量在 1 A g -1 下,500 次循环后容量保持率为 74%。梯度价态分布钒氧水合物的制备策略为水系锌离子电池正极材料的开发提供了新思路。
更新日期:2021-09-01
down
wechat
bug