当前位置: X-MOL 学术Nat. Hazards Earth Syst. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article)
Natural Hazards and Earth System Sciences ( IF 4.2 ) Pub Date : 2021-09-01 , DOI: 10.5194/nhess-21-2705-2021
Piero Lionello , David Barriopedro , Christian Ferrarin , Robert J. Nicholls , Mirko Orlić , Fabio Raicich , Marco Reale , Georg Umgiesser , Michalis Vousdoukas , Davide Zanchettin

Floods in the Venice city centre result from the superposition of several factors: astronomical tides; seiches; and atmospherically forced fluctuations, which include storm surges, meteotsunamis, and surges caused by atmospheric planetary waves. All these factors can contribute to positive water height anomalies individually and can increase the probability of extreme events when they act constructively. The largest extreme water heights are mostly caused by the storm surges produced by the sirocco winds, leading to a characteristic seasonal cycle, with the largest and most frequent events occurring from November to March. Storm surges can be produced by cyclones whose centres are located either north or south of the Alps. Historically, the most intense events have been produced by cyclogenesis in the western Mediterranean, to the west of the main cyclogenetic area of the Mediterranean region in the Gulf of Genoa. Only a small fraction of the inter-annual variability in extreme water heights is described by fluctuations in the dominant patterns of atmospheric circulation variability over the Euro-Atlantic sector. Therefore, decadal fluctuations in water height extremes remain largely unexplained. In particular, the effect of the 11-year solar cycle does not appear to be steadily present if more than 100 years of observations are considered. The historic increase in the frequency of floods since the mid-19th century is explained by relative mean sea level rise. Analogously, future regional relative mean sea level rise will be the most important driver of increasing duration and intensity of Venice floods through this century, overcompensating for the small projected decrease in marine storminess. The future increase in extreme water heights covers a wide range, largely reflecting the highly uncertain mass contributions to future mean sea level rise from the melting of Antarctica and Greenland ice sheets, especially towards the end of the century. For a high-emission scenario (RCP8.5), the magnitude of 1-in-100-year water height values at the northern Adriatic coast is projected to increase by 26–35 cm by 2050 and by 53–171 cm by 2100 with respect to the present value and is subject to continued increase thereafter. For a moderate-emission scenario (RCP4.5), these values are 12–17 cm by 2050 and 24–56 cm by 2100. Local subsidence (which is not included in these estimates) will further contribute to the future increase in extreme water heights. This analysis shows the need for adaptive long-term planning of coastal defences using flexible solutions that are appropriate across the large range of plausible future water height extremes.

中文翻译:

威尼斯极端洪水:特征、动态、过去和未来的演变(评论文章)

威尼斯市中心的洪水是多种因素叠加的结果:天文潮汐;塞克斯;和大气强迫波动,包括​​风暴潮、meteotsunamis 和由大气行星波引起的浪涌。所有这些因素都会单独导致正水高异常,并且当它们采取建设性行动时会增加极端事件发生的可能性。最大的极端水高主要是由西洛克风产生的风暴潮引起的,导致典型的季节性周期,最大和最频繁的事件发生在 11 月至 3 月。风暴潮可由中心位于阿尔卑斯山北部或南部的气旋产生。从历史上看,最强烈的事件是由地中海西部的气旋形成产生的,位于热那亚湾地中海地区的主要气旋区以西。只有一小部分极端水位的年际变化是由欧洲-大西洋部门大气环流变化的主要模式的波动来描述的。因此,极端水位的十年波动在很大程度上仍然无法解释。特别是,如果考虑超过 100 年的观测,11 年太阳周期的影响似乎不会稳定存在。自 19 世纪中叶以来洪水频率的历史性增加是由相对平均海平面上升来解释的。类似地,未来区域相对平均海平面上升将是本世纪威尼斯洪水持续时间和强度增加的最重要驱动因素,过度补偿海洋风暴的小幅预期下降。未来极端水高的增加范围很广,主要反映了南极洲和格陵兰冰盖融化对未来平均海平面上升的质量贡献高度不确定,特别是在本世纪末。对于高排放情景 (RCP8.5),到 2050 年,亚得里亚海北部海岸 100 年一遇的水高值的幅度预计将增加 26-35 厘米,到 2100 年将增加 53-171 厘米,其中相对于现值,此后可能会继续增加。对于中等排放情景 (RCP4.5),这些值到 2050 年为 12-17 厘米,到 2100 年为 24-56 厘米。很大程度上反映了南极洲和格陵兰冰盖融化对未来平均海平面上升的高度不确定的质量贡献,特别是在本世纪末。对于高排放情景 (RCP8.5),到 2050 年,亚得里亚海北部海岸 100 年一遇的水高值的幅度预计将增加 26-35 厘米,到 2100 年将增加 53-171 厘米,其中相对于现值,此后可能会继续增加。对于中等排放情景 (RCP4.5),这些值到 2050 年为 12-17 厘米,到 2100 年为 24-56 厘米。很大程度上反映了南极洲和格陵兰冰盖融化对未来平均海平面上升的高度不确定的质量贡献,特别是在本世纪末。对于高排放情景 (RCP8.5),到 2050 年,亚得里亚海北部海岸 100 年一遇的水高值的幅度预计将增加 26-35 厘米,到 2100 年将增加 53-171 厘米,其中相对于现值,此后可能会继续增加。对于中等排放情景 (RCP4.5),这些值到 2050 年为 12-17 厘米,到 2100 年为 24-56 厘米。与现值相比,亚得里亚海北部海岸 100 年一遇的水高值的量级预计到 2050 年将增加 26-35 厘米,到 2100 年将增加 53-171 厘米,此后将继续增加. 对于中等排放情景 (RCP4.5),这些值到 2050 年为 12-17 厘米,到 2100 年为 24-56 厘米。与现值相比,亚得里亚海北部海岸 100 年一遇的水高值的量级预计到 2050 年将增加 26-35 厘米,到 2100 年将增加 53-171 厘米,此后将继续增加. 对于中等排放情景 (RCP4.5),这些值到 2050 年为 12-17 厘米,到 2100 年为 24-56 厘米。包括在这些估计中)将进一步促进未来极端水位高度的增加。该分析表明,需要使用灵活的解决方案对海岸防御进行适应性的长期规划,这些解决方案适用于未来可能出现的大范围极端水位。
更新日期:2021-09-01
down
wechat
bug