当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boron isotope fractionation during the formation of amorphous calcium carbonates and their transformation to Mg-calcite and aragonite
Geochimica et Cosmochimica Acta ( IF 5 ) Pub Date : 2021-09-01 , DOI: 10.1016/j.gca.2021.08.041
V. Mavromatis 1 , B. Purgstaller 2 , P. Louvat 3 , L. Faure 3 , V. Montouillout 4 , J. Gaillardet 3 , J. Schott 1
Affiliation  

The non-classical crystallization pathway of carbonate minerals proceeds through the initial formation of an amorphous precursor phase and commonly takes place during biomineralization. Although the isotopic composition of marine calcifiers is often used to reconstruct paleo-environmental conditions, the impact of the crystallization pathway followed by these organisms on the isotope composition of their skeletons has rarely been quantified. This study presents the first examination of B partitioning and isotope fractionation during CaCO3 formation via an amorphous calcium carbonate phase, which provides new insights into the incorporation of B into marine calcite and aragonite that form via this route. Boron concentrations and isotope compositions of the fluids and the formed solids were characterized during the course of experiments that lasted two years and were performed at 25°C under controlled pH conditions. The results suggest that during Mg-ACC formation, B distribution coefficients are 1.5-4 orders of magnitude higher than those reported earlier in the literature for calcite and aragonite. Additionally, B isotope fractionation during Mg-ACC formation is strongly affected by the continuous exchange of solutes between the nanoporous solid phase and the bulk fluid. The isotope composition of the transient amorphous phase is not inherited in the crystalline carbonate mineral phase that ultimately forms, because crystallization proceeds via a continuous dissolution/re-precipitation process and/or chemical/isotope exchange between the solid surface and the fluid. Interestingly, the isotope fractionation between the fluid and the final crystalline products is different from those achieved in earlier studies where mineral growth proceeded via the standard mechanism of ion-by-ion addition of solutes to advancing steps. The B isotope fractionations measured in this study are in good agreement with results of equilibrium first principle calculations for calcite and aragonite (Balan et al., 2018) except in the case of calcite formed at pH = 8.9, suggesting that changes in aqueous speciation (i.e. increase of NaB(OH)4° and CO32- concentrations) may be responsible for slight changes of the calcite BO4 environment and isotope composition. It is expected that this study will help to better decipher the mechanisms controlling B isotope fractionation during the non-classical growth of calcium carbonates involving the formation of transient amorphous precursors.



中文翻译:

无定形碳酸钙形成过程中的硼同位素分馏及其向镁方解石和文石的转化

碳酸盐矿物的非经典结晶途径通过无定形前体相的初始形成进行,通常发生在生物矿化过程中。尽管海洋钙化物的同位素组成经常被用来重建古环境条件,但这些生物所遵循的结晶途径对其骨骼同位素组成的影响很少被量化。本研究首次对 CaCO 3过程中的 B 分配和同位素分馏进行了检查通过无定形碳酸钙相形成,这为将 B 掺入通过该途径形成的海洋方解石和文石提供了新的见解。在持续两年的实验过程中表征了流体和形成的固体的硼浓度和同位素组成,并在 25°C 和受控的 pH 条件下进行。结果表明,在 Mg-ACC 形成过程中,B 分布系数比文献中早先报道的方解石和文石的分布系数高 1.5-4 个数量级。此外,Mg-ACC 形成过程中的 B 同位素分馏受到纳米多孔固相和本体流体之间溶质连续交换的强烈影响。瞬态无定形相的同位素组成不会在最终形成的结晶碳酸盐矿物相中继承,因为结晶是通过固体表面和流体之间的连续溶解/再沉淀过程和/或化学/同位素交换进行的。有趣的是,流体和最终结晶产物之间的同位素分馏与早期研究中实现的同位素分馏不同,在早期研究中,矿物生长通过溶质逐离子添加到推进步骤的标准机制进行。本研究中测量的 B 同位素分馏与方解石和文石的平衡第一原理计算结果非常一致(Balan 等人,2018 年),但在 pH = 8.9 时形成方解石的情况除外,这表明水相形态的变化(即增加 NaB(OH) 因为结晶是通过固体表面和流体之间的连续溶解/再沉淀过程和/或化学/同位素交换进行的。有趣的是,流体和最终结晶产物之间的同位素分馏与早期研究中实现的同位素分馏不同,在早期研究中,矿物生长通过溶质逐离子添加到推进步骤的标准机制进行。本研究中测量的 B 同位素分馏与方解石和文石的平衡第一原理计算结果非常一致(Balan 等人,2018 年),但在 pH = 8.9 时形成方解石的情况除外,这表明水相形态的变化(即增加 NaB(OH) 因为结晶是通过固体表面和流体之间的连续溶解/再沉淀过程和/或化学/同位素交换进行的。有趣的是,流体和最终结晶产物之间的同位素分馏与早期研究中实现的同位素分馏不同,在早期研究中,矿物生长通过溶质逐离子添加到推进步骤的标准机制进行。本研究中测量的 B 同位素分馏与方解石和文石的平衡第一原理计算结果非常一致(Balan 等人,2018 年),但在 pH = 8.9 时形成方解石的情况除外,这表明水相形态的变化(即增加 NaB(OH) 流体和最终结晶产物之间的同位素分馏与早期研究中实现的同位素分馏不同,在早期研究中,矿物生长通过溶质逐个离子添加到前进步骤的标准机制进行。本研究中测量的 B 同位素分馏与方解石和文石的平衡第一原理计算结果非常一致(Balan 等人,2018 年),但在 pH = 8.9 时形成方解石的情况除外,这表明水相形态的变化(即增加 NaB(OH) 流体和最终结晶产物之间的同位素分馏与早期研究中实现的同位素分馏不同,在早期研究中,矿物生长通过溶质逐个离子添加到前进步骤的标准机制进行。本研究中测量的 B 同位素分馏与方解石和文石的平衡第一原理计算结果非常一致(Balan 等人,2018 年),但在 pH = 8.9 时形成方解石的情况除外,这表明水相形态的变化(即增加 NaB(OH)4 ° 和 CO 3 2-浓度)可能是方解石 BO 4环境和同位素组成发生轻微变化的原因。预计这项研究将有助于更好地解释在涉及形成瞬态无定形前体的碳酸钙非经典生长过程中控制 B 同位素分馏的机制。

更新日期:2021-09-01
down
wechat
bug