当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances in the mechanical characterization of shales at nano-to micro-scales: A review
Mechanics of Materials ( IF 3.4 ) Pub Date : 2021-09-01 , DOI: 10.1016/j.mechmat.2021.104043
Farnood Sobhbidari 1 , Qinhong Hu 1
Affiliation  

Understanding geomechanical properties of shales, such as stiffness properties and fracture toughness, is important in different areas of petroleum industry-related activities. Nanoscale to microscale experiments on shale samples require a much smaller sample compared to macroscale experiments. This is a major advantage because irregularly-shaped drill cuttings from shales can be used for experimental analyses, such as nanoindentation or atomic force microscopy (AFM). However, characterization of mechanical properties at the nano-to micro-scale is a relatively new addition to classical geomechanical experiments on shales, and there is still a lack of both fundamental knowledge and standard procedures for conducting experiments at this scale. The theoretical principles of nanoindentation-based (Gridded Nanoindentation and Modulus Mapping) and AFM-based experimental methods (PeakForce QNM™ and AFM-IR), a review of the literature results and the major findings are explained in Sections 2 and 3, respectively. These experimental techniques are compared in Section 4. Overall, nanoindentation experiments reveal the anisotropy of organic matter (OM)-rich shales at the nanoscale, and it is shown that gridded nanoindentation is capable of characterizing different minerals with respect to their stiffness properties. The capability of AFM (PeakForce QNM™) to differentiate between different minerals within OM-rich shales with distinct mechanical properties, in particular stiffness, is also demonstrated. It is shown that AFM-based methods are more straightforward than gridded-nanoindentation to characterize OM-rich shales based on the stiffness of different constituent minerals of OM-rich shales, but nanoindentation can apply higher loads than AFM-based methods. Therefore, they can measure creep properties and fracture toughness of OM-rich shales. It is shown that the OM is the most compliant part of the OM-rich shales, but it is still unclear if thermal maturation has an impact on the stiffness of OM. It is necessary to investigate if there is a relationship between the OM type (kerogen, bitumen, etc.) and mechanical properties such as Young's modulus and Creep rate.



中文翻译:

纳米到微米级页岩力学表征的最新进展:综述

了解页岩的地质力学特性,例如刚度特性和断裂韧性,在石油工业相关活动的不同领域非常重要。与宏观实验相比,页岩样品的纳米级到微米级实验需要的样本要小得多。这是一个主要优势,因为来自页岩的不规则形状的钻屑可用于实验分析,例如纳米压痕或原子力显微镜 (AFM)。然而,从纳米到微米尺度的力学特性表征是对页岩经典地质力学实验的一个相对较新的补充,并且仍然缺乏在这种尺度上进行实验的基础知识和标准程序。基于纳米压痕(网格纳米压痕和模量映射)和基于 AFM 的实验方法(PeakForce QNM™ 和 AFM-IR)的理论原理、文献结果回顾和主要发现分别在第 2 节和第 3 节中进行了解释。这些实验技术在第 4 节中进行了比较。总的来说,纳米压痕实验揭示了富含有机质 (OM) 的页岩在纳米尺度上的各向异性,并且表明网格纳米压痕能够表征不同矿物的刚度特性。还证明了 AFM (PeakForce QNM™) 能够区分富含 OM 的页岩中具有不同机械性能,特别是刚度的不同矿物。结果表明,基于 AFM 的方法比网格纳米压痕更直接地根据富含 OM 的页岩的不同组成矿物的刚度来表征富含 OM 的页岩,但纳米压痕可以比基于 AFM 的方法施加更高的载荷。因此,他们可以测量富含 OM 的页岩的蠕变特性和断裂韧性。结果表明,OM 是富含 OM 的页岩中最柔顺的部分,但目前尚不清楚热成熟是否对 OM 的刚度有影响。有必要研究 OM 类型(干酪根、沥青等)与杨氏模量和蠕变率等机械性能之间是否存在关系。它们可以测量富含 OM 的页岩的蠕变特性和断裂韧性。结果表明,OM 是富含 OM 的页岩中最柔顺的部分,但目前尚不清楚热成熟是否对 OM 的刚度有影响。有必要研究 OM 类型(干酪根、沥青等)与杨氏模量和蠕变率等机械性能之间是否存在关系。它们可以测量富含 OM 的页岩的蠕变特性和断裂韧性。结果表明,OM 是富含 OM 的页岩中最柔顺的部分,但目前尚不清楚热成熟是否对 OM 的刚度有影响。有必要研究 OM 类型(干酪根、沥青等)与杨氏模量和蠕变率等机械性能之间是否存在关系。

更新日期:2021-09-03
down
wechat
bug