当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correlations of laser scanning parameters and porous structure properties of permeable materials made by laser-beam powder-bed fusion
Additive Manufacturing ( IF 10.3 ) Pub Date : 2021-09-01 , DOI: 10.1016/j.addma.2021.102261
Dongxu Xie 1 , Roland Dittmeyer 1
Affiliation  

Laser-beam powder bed fusion (LB-PBF) of metals is an additive manufacturing (AM) method currently being pursued in numerous industries. In this study, the effect of scan strategy, laser spot size, and hatch distance on the pore structure of additively manufactured permeable stainless steel materials was systematically studied through the analysis of material permeability, pore size distribution, porosity, and surface morphology. When the hatch distance is wide and laser power is low, two kinds of pores are formed and were studied. The first one is pores located between laser-melted tracks, the second type is pores generated inside the laser-melted tracks. Scan strategy and laser spot size have no obvious effect on the porosity, but they affect the powder attached on the surface, the permeability, and the pore size of the permeable material. Hatch distance plays an important role in controlling the material properties. When the hatch distance is larger than 0.13 mm, the effect of powder attached on the surface on the pore structure of the permeable material is weakened, and the permeability increases significantly. By optimizing these parameters, permeable materials with pore sizes ranging from 2.6 to 13.7 µm and a thickness of 0.89 mm were fabricated. To illustrate the potential of the method, for the first time an additively manufactured planar permeable-dense metallic membrane substrate with internal flow channels was fabricated, which is a center piece of a new compact modular integrated membrane reformer system.



中文翻译:

激光束粉末床融合制备可渗透材料的激光扫描参数与多孔结构特性的相关性

金属的激光束粉末床融合 (LB-PBF) 是一种增材制造 (AM) 方法,目前正在众多行业中采用。本研究通过对材料渗透率、孔径分布、孔隙率和表面形貌的分析,系统地研究了扫描策略、激光光斑尺寸和孵化距离对增材制造可渗透不锈钢材料孔结构的影响。研究了当孵化距离较宽且激光功率较低时,会形成两种孔隙。第一种是位于激光熔化轨迹之间的气孔,第二种是激光熔化轨迹内部产生的气孔。扫描策略和激光光斑大小对孔隙率没有明显影响,但会影响表面附着的粉末、渗透性和渗透材料的孔径。剖面线距离在控制材料特性方面起着重要作用。当孵化距离大于0.13 mm时,粉体附着在表面对渗透材料孔隙结构的影响减弱,渗透率显着增加。通过优化这些参数,制造出孔径为 2.6 至 13.7 µm、厚度为 0.89 mm 的可渗透材料。为了说明该方法的潜力,首次制造了具有内部流动通道的增材制造的平面可渗透致密金属膜基材,这是新型紧凑型模块化集成膜重整系统的核心部件。附着在表面的粉末对渗透材料孔隙结构的影响减弱,渗透率显着增加。通过优化这些参数,制造出孔径为 2.6 至 13.7 µm、厚度为 0.89 mm 的可渗透材料。为了说明该方法的潜力,首次制造了具有内部流动通道的增材制造的平面可渗透致密金属膜基材,这是新型紧凑型模块化集成膜重整系统的核心部件。附着在表面的粉末对渗透材料孔隙结构的影响减弱,渗透率显着增加。通过优化这些参数,制造出孔径为 2.6 至 13.7 µm、厚度为 0.89 mm 的可渗透材料。为了说明该方法的潜力,首次制造了具有内部流动通道的增材制造的平面可渗透致密金属膜基材,这是新型紧凑型模块化集成膜重整系统的核心部件。

更新日期:2021-09-13
down
wechat
bug