当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of abrasive grain position patterns on the deformation of 6H-silicon carbide subjected to nano-grinding
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2021-09-01 , DOI: 10.1016/j.ijmecsci.2021.106779
Zhonghuai Wu 1 , Liangchi Zhang 2, 3, 4 , Shengyao Yang 1
Affiliation  

A surface machined by nano-grinding is the result of the coupled activities of nano-cutting, nano-extrusion and nano-rubbing by multiple abrasive grains of a grinding wheel. With the aid of large-scale molecular dynamics simulations, this paper used a two-grain model to explore the influence of grain position patterns on the deformation of single crystal 6H-SiC. It was found that regardless of the space location arrangement of the abrasive grains (grain position pattern) and the gap magnitude between the abrasive grains (grain gap), the plastic deformation of 6H-SiC is signified by a thin amorphous layer in the immediate subsurface and dislocations in the deeper subsurface beneath the amorphous layer. However, the defective deformation details, including dislocation distribution and thickness of amorphous layer, vary with the grain position pattern and grain gap due to the different stress and temperature distributions generated during nano-grinding. In addition, under the consecutive pattern below a critical grain gap, both the average forces and surface profiles vary significantly with the grain gap. Under the simultaneous pattern, however, the average forces are mostly constant and the profile grooves are in parallel with each other. The investigation concludes that to achieve a high surface integrity with minimal subsurface damage in 6H-SiC, it is important to use grinding wheels of specific grain position patterns.



中文翻译:

磨粒位置图案对6H-碳化硅纳米磨削变形的影响

纳米磨削加工的表面是砂轮的多个磨粒进行纳米切割、纳米挤压和纳米摩擦耦合作用的结果。借助大规模分子动力学模拟,本文采用两晶粒模型探讨晶粒位置模式对单晶6H-SiC变形的影响。发现无论磨粒的空间位置排列(晶粒位置模式)和磨粒之间的间隙大小(粒隙),6H-SiC的塑性变形都表现为紧邻次表面的非晶薄层和非晶层下方更深的次表面中的位错。然而,有缺陷的变形细节,包括位错分布和非晶层厚度,由于纳米磨削过程中产生的应力和温度分布不同,因此随着晶粒位置模式和晶粒间隙而变化。此外,在临界晶粒间隙下方的连续模式下,平均力和表面轮廓都随晶粒间隙而显着变化。然而,在同时模式下,平均力大多是恒定的,并且轮廓凹槽彼此平行。调查得出的结论是,为了在 6H-SiC 中实现高表面完整性和最小亚表面损伤,使用特定晶粒位置模式的砂轮很重要。平均力和表面轮廓都随着晶粒间隙而显着变化。然而,在同时模式下,平均力大多是恒定的,并且轮廓凹槽彼此平行。调查得出的结论是,为了在 6H-SiC 中实现高表面完整性和最小亚表面损伤,使用特定晶粒位置模式的砂轮很重要。平均力和表面轮廓都随着晶粒间隙而显着变化。然而,在同时模式下,平均力大多是恒定的,并且轮廓凹槽彼此平行。调查得出的结论是,为了在 6H-SiC 中实现高表面完整性和最小亚表面损伤,使用特定晶粒位置模式的砂轮很重要。

更新日期:2021-09-08
down
wechat
bug