当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasma processing for advanced microelectronics beyond CMOS
Journal of Applied Physics ( IF 2.7 ) Pub Date : 2021-08-24 , DOI: 10.1063/5.0053666
N. Marchack 1 , L. Buzi 1 , D. B. Farmer 1 , H. Miyazoe 1 , J. M. Papalia 1 , H. Yan 1 , G. Totir 1 , S. U. Engelmann 1
Affiliation  

The scientific study of plasma discharges and their material interactions has been crucial to the development of semiconductor process engineering and, by extension, the entire microelectronics industry. In recent years, the proliferation of the big data business model has led to heightened interest in technology candidates with the potential to supplant CMOS architectures in critical metrics such as computational capacity or power consumption. These novel technologies share many common material elements with existing logic and memory devices, but the impact of mass fabrication techniques on their performance is largely unknown due to differences in the underlying physics of their operation. Two components are thus vital to this endeavor: fundamental evaluation of any emerging plasma process interactions and the ability to tailor any aspect of the plasma process necessary to produce the desired specifications. In this article, we review relevant advances in the study of plasma-induced damage mechanisms as well as characterization methods such as diagnostic probes and simulation tools. We also provide an outlook for the application of techniques such as plasma doping, area-selective etch/deposition, and heterogeneous integration. The frontiers of any new computing paradigms can only be explored through a focus on atomic scale engineering, and progress in the field of plasma science supplies the necessary toolset.

中文翻译:

用于超越 CMOS 的先进微电子的等离子体处理

等离子体放电及其材料相互作用的科学研究对于半导体工艺工程的发展以及整个微电子行业的发展至关重要。近年来,大数据商业模式的激增导致人们对有可能在计算能力或功耗等关键指标上取代 CMOS 架构的技术候选者的兴趣增加。这些新技术与现有的逻辑和存储设备共享许多共同的材料元素,但由于其操作的基础物理差异,大规模制造技术对其性能的影响在很大程度上是未知的。因此,有两个组成部分对这项工作至关重要:对任何新出现的等离子工艺相互作用的基本评估,以及定制生产所需规格所需的等离子工艺任何方面的能力。在本文中,我们回顾了等离子体诱导损伤机制研究的相关进展以及诊断探针和模拟工具等表征方法。我们还提供了对等离子掺杂、区域选择性蚀刻/沉积和异质集成等技术应用的展望。任何新计算范式的前沿都只能通过关注原子尺度工程来探索,而等离子体科学领域的进步提供了必要的工具集。我们回顾了等离子体诱导损伤机制研究的相关进展以及诊断探针和模拟工具等表征方法。我们还提供了对等离子掺杂、区域选择性蚀刻/沉积和异质集成等技术应用的展望。任何新计算范式的前沿都只能通过关注原子尺度工程来探索,而等离子体科学领域的进步提供了必要的工具集。我们回顾了等离子体诱导损伤机制研究的相关进展以及诊断探针和模拟工具等表征方法。我们还展望了等离子体掺杂、区域选择性蚀刻/沉积和异质集成等技术的应用前景。任何新计算范式的前沿都只能通过关注原子尺度工程来探索,而等离子体科学领域的进步提供了必要的工具集。
更新日期:2021-08-31
down
wechat
bug