当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron–electron double resonance detected NMR spectroscopy using ensemble NV centers at 230 GHz and 8.3 T
Journal of Applied Physics ( IF 2.7 ) Pub Date : 2021-08-23 , DOI: 10.1063/5.0055642
Benjamin Fortman 1 , Laura Mugica-Sanchez 1 , Noah Tischler 1 , Cooper Selco 2 , Yuxiao Hang 2 , Karoly Holczer 3 , Susumu Takahashi 1, 2
Affiliation  

The nitrogen-vacancy (NV) center has enabled widespread study of nanoscale nuclear magnetic resonance (NMR) spectroscopy at low magnetic fields. NMR spectroscopy at high magnetic fields significantly improves the technique’s spectral resolution, enabling clear identification of closely related chemical species. However, NV-detected NMR is typically performed using AC sensing through electron spin echo envelope modulation, a hyperfine spectroscopic technique that is not feasible at high magnetic fields. Within this paper, we have explored an NV-detected NMR technique for applications of high field NMR. We have demonstrated optically detected magnetic resonance with the NV Larmor frequency of 230 GHz at 8.3 T, corresponding to a proton NMR frequency of 350 MHz. We also demonstrated the first measurement of electron–electron double resonance detected NMR using the NV center and successfully detected 13C nuclear bath spins. The described technique is limited by the longitudinal relaxation time (T1), not the transverse relaxation time (T2). Future applications of the method to perform nanoscale NMR of external spins at 8.3 T and even higher magnetic fields are also discussed.

中文翻译:

使用 230 GHz 和 8.3 T 的整体 NV 中心进行电子-电子双共振检测的 NMR 光谱

氮空位 (NV) 中心使人们能够在低磁场下广泛研究纳米级核磁共振 (NMR) 光谱。高磁场下的 NMR 光谱显着提高了该技术的光谱分辨率,从而能够清楚地识别密切相关的化学物质。然而,NV 检测到的 NMR 通常是通过电子自旋回波包络调制使用交流传感来执行的,这是一种在高磁场下不可行的超精细光谱技术。在本文中,我们探索了一种用于高场 NMR 应用的 NV 检测 NMR 技术。我们已经证明了 NV Lamor 频率为 230 GHz、8.3 T 的光学检测磁共振,对应于 350 MHz 的质子核磁共振频率。13C核浴旋转。所描述的技术受到纵向弛豫时间的限制(1),而不是横向弛豫时间 (2)。还讨论了该方法在 8.3 T 和更高磁场下进行纳米级 NMR 外自旋的未来应用。
更新日期:2021-08-31
down
wechat
bug