当前位置: X-MOL 学术ACS Biomater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polymeric Nanocomposite Structures Based on Functionalized Graphene with Tunable Properties for Nervous Tissue Replacement
ACS Biomaterials Science & Engineering ( IF 5.4 ) Pub Date : 2021-08-30 , DOI: 10.1021/acsbiomaterials.1c00744
Alireza Talebi 1 , Sheyda Labbaf 1 , Mehdi Atari 1 , Maryam Parhizkar 2
Affiliation  

Electroconductive scaffolds can be a promising approach to repair conductive tissues when natural healing fails. Recently, nerve tissue engineering constructs have been widely investigated due to the challenges in creating a structure with optimized physiochemical and mechanical properties close to the native tissue. The goal of the current study was to fabricate graphene-containing polycaprolactone/gelatin/polypyrrole (PCL/gelatin/PPy) and polycaprolactone/polyglycerol-sebacate/polypyrrole (PCL/PGS/PPy) with intrinsic electrical properties through an electrospinning process. The effect of graphene on the properties of PCL/gelatin/PPy and PCL/PGS/PPy were investigated. Results demonstrated that graphene incorporation remarkably modulated the physical and mechanical properties of the scaffolds such that the electrical conductivity increased from 0.1 to 3.9 ± 0.3 S m–1 (from 0 to 3 wt % graphene) and toughness was found to be 76 MPa (PCL/gelatin/PPy 3 wt % graphene) and 143.4 MPa (PCL/PGS/PPy 3 wt % graphene). Also, the elastic moduli of the scaffolds with 0, 1, and 2 wt % graphene were reported as 210, 300, and 340 kPa in the PCL/gelatin/PPy system and 72, 85, and 92 kPa for the PCL/PGS/PPy system. A cell viability study demonstrated the noncytotoxic nature of the resultant scaffolds. The sum of the results presented in this study suggests that both PCL/gelatin/PPy/graphene and PCL/PGS/PPy/graphene compositions could be promising biomaterials for a range of conductive tissue replacement or regeneration applications.

中文翻译:

基于功能化石墨烯的聚合物纳米复合结构具有可调节的神经组织置换特性

当自然愈合失败时,导电支架可能是修复导电组织的一种很有前途的方法。最近,由于在创建具有接近天然组织的优化的物理化学和机械性能的结构方面存在挑战,神经组织工程结构已被广泛研究。本研究的目标是通过静电纺丝工艺制备具有固有电性能的含石墨烯的聚己内酯/明胶/聚吡咯(PCL/明胶/PPy)和聚己内酯/聚甘油癸二酸酯/聚吡咯(PCL/PGS/PPy)。研究了石墨烯对PCL/明胶/PPy和PCL/PGS/PPy性能的影响。结果表明,石墨烯的掺入显着调节了支架的物理和机械性能,使得电导率从 0 增加。–1(从 0 到 3 wt% 石墨烯),韧性为 76 MPa(PCL/明胶/PPy 3 wt% 石墨烯)和 143.4 MPa(PCL/PGS/PPy 3 wt% 石墨烯)。此外,据报道,含有 0、1 和 2 wt% 石墨烯的支架的弹性模量在 PCL/明胶/PPy 系统中为 210、300 和 340 kPa,而在 PCL/PGS/系统中为 72、85 和 92 kPa。 PP系统。细胞活力研究证明了所得支架的非细胞毒性性质。本研究中提出的结果总和表明,PCL/明胶/PPy/石墨烯和 PCL/PGS/PPy/石墨烯组合物都可能是用于一系列导电组织替代或再生应用的有前途的生物材料。
更新日期:2021-09-13
down
wechat
bug