当前位置: X-MOL 学术Rapid Prototyping J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigations into abrasive flow machining (AFM) of 3D printed ABS and PLA parts
Rapid Prototyping Journal ( IF 3.4 ) Pub Date : 2021-08-31 , DOI: 10.1108/rpj-01-2021-0013
Nitin Dixit 1 , Varun Sharma 2 , Pradeep Kumar 2
Affiliation  

Purpose

The surface roughness of additively manufactured parts is usually found to be high. This limits their use in industrial and biomedical applications. Therefore, these parts required post-processing to improve their surface quality. The purpose of this study is to finish three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) parts using abrasive flow machining (AFM).

Design/methodology/approach

A hydrogel-based abrasive media has been developed to finish 3D printed parts. The developed abrasive media has been characterized for its rheology and thermal stability using sweep tests, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The ABS and PLA cylindrical parts have been prepared using fused deposition modeling (FDM) and finished using AFM. The experiments were designed using Taguchi (L9 OA) method. The effect of process parameters such as extrusion pressure (EP), layer thickness (LT) and abrasive concentration (AC) was investigated on the amount of material removed (MR) and percentage improvement in surface roughness (%ΔRa).

Findings

The developed abrasive media was found to be effective for finishing FDM printed parts using AFM. The microscope images of unfinished and finished showed a significant improvement in surface topography of additively manufactures parts after AFM. The results reveal that AC is the most significant parameter during the finishing of ABS parts. However, EP and AC are the most significant parameters for MR and %ΔRa, respectively, during the finishing of PLA parts.

Practical implications

The FDM technology has applications in the biomedical, electronics, aeronautics and defense sectors. PLA has good biodegradable and biocompatible properties, so widely used in biomedical applications. The ventilator splitters fabricated using FDM have a profile similar to the shape used in the present study.

Research limitations/implications

The present study is focused on finishing FDM printed cylindrical parts using AFM. Future research may be done on the AFM of complex shapes and freeform surfaces printed using different additive manufacturing (AM) techniques.

Originality/value

An abrasive media consists of xanthan gum, locust bean gum and fumed silica has been developed and characterized. An experimental study has been performed by combining printing parameters of FDM and finishing parameters of AFM. A comparative analysis in MR and %ΔRa has been reported between 3D printed ABS and PLA parts.



中文翻译:

3D 打印 ABS 和 PLA 零件的磨粒流加工 (AFM) 实验研究

目的

增材制造零件的表面粗糙度通常很高。这限制了它们在工业和生物医学应用中的使用。因此,这些零件需要进行后处理以提高其表面质量。本研究的目的是使用磨粒流加工 (AFM) 完成三维 (3D) 打印的丙烯腈丁二烯苯乙烯 (ABS) 和聚乳酸 (PLA) 部件。

设计/方法/方法

已经开发出一种基于水凝胶的研磨介质来完成 3D 打印部件。使用扫描测试、热重分析 (TGA) 和差热分析 (DTA) 对开发的磨料介质的流变学和热稳定性进行了表征。ABS 和 PLA 圆柱形零件已使用熔融沉积建模 (FDM) 制备并使用 AFM 完成。使用田口(L9 OA)方法设计实验。研究了挤出压力 (EP)、层厚度 (LT) 和磨料浓度 (AC) 等工艺参数对材料去除量 (MR) 和表面粗糙度改善百分比 (%ΔR a ) 的影响。

发现

发现开发的研磨介质对于使用 AFM 精加工 FDM 打印部件是有效的。未完成和完成的显微镜图像显示 AFM 后增材制造零件的表面形貌有显着改善。结果表明,AC 是 ABS 零件精加工过程中最重要的参数。然而,在 PLA 零件的精加工过程中,EP 和 AC 分别是 MR 和 %ΔR a的最重要参数。

实际影响

FDM 技术在生物医学、电子、航空和国防领域都有应用。PLA具有良好的生物降解性和生物相容性,因此广泛应用于生物医学领域。使用 FDM 制造的呼吸机分流器的轮廓与本研究中使用的形状相似。

研究限制/影响

本研究的重点是使用 AFM 对 FDM 打印的圆柱形零件进行精加工。未来的研究可能会在使用不同增材制造 (AM) 技术打印的复杂形状和自由曲面的 AFM 上进行。

原创性/价值

一种由黄原胶、刺槐豆胶和气相二氧化硅组成的研磨介质已被开发和表征。通过结合 FDM 的印刷参数和 AFM 的整理参数进行了实验研究。已经报道了 3D 打印的 ABS 和 PLA 部件之间的MR 和 %ΔR a 的比较分析。

更新日期:2021-08-31
down
wechat
bug