当前位置: X-MOL 学术Curr. Pharm. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perfluorocarbons Therapeutics in Modern Cancer Nanotechnology for Hypoxiainduced Anti-tumor Therapy
Current Pharmaceutical Design ( IF 2.6 ) Pub Date : 2021-11-30 , DOI: 10.2174/1381612827666210830100907
Saurabh Satija 1 , Prabal Sharma 1 , Harpreet Kaur 1 , Daljeet S Dhanjal 2 , Reena S Chopra 2 , Navneet Khurana 1 , Manish Vyas 1 , Neha Sharma 1 , Murtaza M Tambuwala 3 , Hamid A Bakshi 3 , Nitin B Charbe 4 , Flavia C Zacconi 5 , Dinesh K Chellappan 6 , Kamal Dua 7 , Meenu Mehta 1
Affiliation  

With an estimated failure rate of about 90%, immunotherapies that are intended for the treatment of solid tumors have caused an anomalous rise in the mortality rate over the past decades. It is apparent that resistance towards such therapies primarily occurs due to elevated levels of HIF-1 (Hypoxia-induced factor) in tumor cells, which are caused by disrupted microcirculation and diffusion mechanisms. With the advent of nanotechnology, several innovative advances were brought to the fore; and, one such promising direction is the use of perfluorocarbon nanoparticles in the management of solid tumors. Perfluorocarbon nanoparticles enhance the response of hypoxia-based agents (HBAs) within the tumor cells and have been found to augment the entry of HBAs into the tumor micro-environment. The heightened penetration of HBAs causes chronic hypoxia, thus aiding in the process of cell quiescence. In addition, this technology has also been applied in photodynamic therapy, where oxygen self-enriched photosensitizers loaded perfluorocarbon nanoparticles are employed. The resulting processes initiate a cascade, depleting tumour oxygen and turning it into a reactive oxygen species eventually to destroy the tumour cell. This review elaborates on the multiple applications of nanotechnology based perfluorocarbon formulations that are being currently employed in the treatment of tumour hypoxia.



中文翻译:

现代癌症纳米技术中的全氟化碳治疗缺氧抗肿瘤治疗

估计失败率约为 90%,用于治疗实体瘤的免疫疗法在过去几十年中导致死亡率异常上升。很明显,对这种疗法的抵抗主要是由于肿瘤细胞中 HIF-1(缺氧诱导因子)水平升高,这是由微循环和扩散机制破坏引起的。随着纳米技术的出现,一些创新的进步脱颖而出;并且,一个这样有希望的方向是在实体瘤的管理中使用全氟化碳纳米颗粒。全氟化碳纳米颗粒增强了肿瘤细胞内基于缺氧的药物 (HBA) 的反应,并已被发现可增加 HBA 进入肿瘤微环境的能力。HBA 的高度渗透导致慢性缺氧,从而有助于细胞静止的过程。此外,该技术还应用于光动力疗法,其中使用了氧自富集光敏剂负载的全氟化碳纳米颗粒。由此产生的过程引发级联反应,消耗肿瘤氧并将其转化为活性氧,最终破坏肿瘤细胞。这篇综述详细阐述了基于纳米技术的全氟化碳制剂的多种应用,这些制剂目前用于治疗肿瘤缺氧。消耗肿瘤氧气并将其转化为活性氧,最终破坏肿瘤细胞。这篇综述详细阐述了基于纳米技术的全氟化碳制剂的多种应用,这些制剂目前用于治疗肿瘤缺氧。消耗肿瘤氧气并将其转化为活性氧,最终破坏肿瘤细胞。这篇综述详细阐述了基于纳米技术的全氟化碳制剂的多种应用,这些制剂目前用于治疗肿瘤缺氧。

更新日期:2021-11-17
down
wechat
bug