当前位置: X-MOL 学术Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Janus luminogens with bended intramolecular charge transfer: Toward molecular transistor and brain imaging
Matter ( IF 17.3 ) Pub Date : 2021-08-30 , DOI: 10.1016/j.matt.2021.08.002
Qian Wu 1, 2 , Junkai Liu 3 , Youmei Li 1, 2 , Michelle M.S. Lee 3 , Lianrui Hu 3 , Ying Li 1 , Panwang Zhou 4 , Dong Wang 1 , Ben Zhong Tang 3, 5
Affiliation  

The ingenious construction of electron donor-acceptor (D-A) systems has been proven to be the major trend for advanced performance optoelectronic materials. However, the related development is undiversified and has become stereotyped in recent years, and the explorations of innovative architecture with both prominent optoelectronic properties and innovatively coined optoelectronic mechanisms are appealing, yet significantly challenging tasks. Here, we exploit a series of unique Janus luminogens, namely TAOs, with unique charge separation in a simple five-membered mesoionic ring. TAOs, having low molecular weight (∼329 g mol−1), present efficient aggregation-induced red/near-infrared emission (550–850 nm) with up to 21.5% of fluorescence quantum yield. An original mechanism, termed bended intramolecular charge transfer (BICT), is proposed to understand the fluorescence behavior. It is experimentally demonstrated that TAOs exhibit great potential for use as molecular transistors and can be efficiently utilized in living cells, bacteria, and brain imaging in a straightforward manner by using intravenous postinjection with outstanding photostability and biocompatibility.



中文翻译:

具有弯曲分子内电荷转移的 Janus 发光体:迈向分子晶体管和脑成像

电子供体-受体(DA)系统的巧妙构建已被证明是先进性能光电材料的主要趋势。然而,相关的发展是单一的,并在近年来变得刻板,同时具有突出光电特性和创新创造光电机制的创新架构的探索是有吸引力的,但具有显着挑战性的任务。在这里,我们利用一系列独特的 Janus 发光体,即 TAO,在简单的五元介离子环中具有独特的电荷分离。TAO,具有低分子量(~329 g mol -1),呈现有效的聚集诱导红色/近红外发射 (550–850 nm),荧光量子产率高达 21.5%。提出了一种称为弯曲分子内电荷转移 (BICT) 的原始机制来理解荧光行为。实验证明,TAOs 具有用作分子晶体管的巨大潜力,并且可以通过静脉注射后注射以直接的方式有效地用于活细胞、细菌和大脑成像,具有出色的光稳定性和生物相容性。

更新日期:2021-10-06
down
wechat
bug