当前位置: X-MOL 学术Plant Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology
Plant Physiology ( IF 6.5 ) Pub Date : 2021-07-23 , DOI: 10.1093/plphys/kiab353
Mayuri Sadoine, Yuuma Ishikawa, Thomas J. Kleist, Michael M. Wudick, Masayoshi Nakamura, Guido Grossmann, Wolf B. Frommer, Cheng-Hsun Ho

The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters, and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. The cellular distribution of receptors, ligands, and activation state must be integrated with information about the cellular distribution of metabolites in relation to metabolic fluxes and signaling dynamics in order to achieve the promise of in vivo biochemistry. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension. First steps have been taken to monitor the activity of transporters in vivo. Advancements in imaging technologies and specimen handling and stimulation have enabled researchers in plant sciences to implement sensor technologies in intact plants. Here, we provide a brief history of the development of genetically encoded sensors and an overview of the types of sensors available for quantifying and visualizing ion and metabolite distribution and dynamics. We further discuss the pros and cons of specific sensor designs, imaging systems, and sample manipulations, provide advice on the choice of technology, and give an outlook into future developments.

中文翻译:

用于探索植物生物学的基因编码荧光传感器的设计、应用和局限性

了解多细胞生物中的信号传导和代谢过程需要了解小分子的空间动力学和体内酶、转运蛋白和其他蛋白质的活性,以及​​细胞内和跨组织的生物物理参数。受体、配体和激活状态的细胞分布必须与代谢物的细胞分布与代谢通量和信号动力学相关的信息相结合,以实现体内生物化学的前景。基因编码传感器是工程荧光蛋白,已针对各种小分子(如离子和代谢物)或报告生物物理过程(如跨膜电压或张力)而开发。已采取第一步监测体内转运蛋白的活性。成像技术和标本处理和刺激的进步使植物科学研究人员能够在完整的植物中实施传感器技术。在这里,我们简要介绍了基因编码传感器的发展历史,并概述了可用于量化和可视化离子和代谢物分布和动力学的传感器类型。我们进一步讨论特定传感器设计、成像系统和样品操作的优缺点,就技术选择提供建议,并对未来发展进行展望。我们简要介绍了基因编码传感器的发展历史,并概述了可用于量化和可视化离子和代谢物分布和动力学的传感器类型。我们进一步讨论特定传感器设计、成像系统和样品操作的优缺点,就技术选择提供建议,并对未来发展进行展望。我们简要介绍了基因编码传感器的发展历史,并概述了可用于量化和可视化离子和代谢物分布和动力学的传感器类型。我们进一步讨论特定传感器设计、成像系统和样品操作的优缺点,就技术选择提供建议,并对未来发展进行展望。
更新日期:2021-07-23
down
wechat
bug