Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Validation of thermal models to predict the productivity and heat transfer coefficients for passive solar still with different nanoparticles
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects ( IF 2.3 ) Pub Date : 2021-08-29 , DOI: 10.1080/15567036.2021.1971338
Vikas Kumar Thakur 1 , Manoj Kumar Gaur 1 , Amrat Kumar Dhamneya 1 , Prem Kumar Chaurasiya 2
Affiliation  

ABSTRACT

The study aims to predict the internal heat transfer coefficient (HTC) and distillate output of single slope solar still with and without nanoparticles for 41° tilt angle of glass cover with 4 cm water depth using various existing thermal models. The experiment is conducted in the winter season at the Solar Lab of MITS, Gwalior campus, M.P., India. After experiment on SSs at three different tilt angles (11°, 26°, and 41°) and three different water depths (4 cm, 5 cm, and 10 cm) it is observed that for winter season, the optimum tilt angle of glass cover is 41° and optimum water depth is 4 cm. Therefore, in this paper, six different thermal models have been validated at optimal parameters. The yield predicted using different thermal models is validated with the experimental yield. Statistical tool correlation coefficient (r) and root mean square percentage deviation (e) are calculated to show the error between experimental and predicted values. It is noticed that the value of correlation coefficient (r) is almost 0.99 for all models and for all cases. Kumar and Tiwari model shows the better agreement with the experimental value, with the lowest yield percentage deviation of 8.41%, 9.52%, and 9.89% for solar still with ZnO nanofluids, CuO nanofluids, and without nanoparticles, respectively. The distillate obtained through the CuO nanofluids and ZnO nanofluids is about 41.11% and 9.75% higher than the water without nanoparticles for 41° tilt angle of glass cover and 4 cm of water depth.



中文翻译:

验证热模型以预测具有不同纳米粒子的被动式太阳能蒸馏器的生产率和传热系数

摘要

该研究旨在使用各种现有的热模型预测具有和不具有纳米颗粒的单斜面太阳能蒸馏器的内部传热系数 (HTC) 和蒸馏输出,用于 ​​4 厘米水深的玻璃盖的 41°倾斜角。该实验于冬季在印度国会议员瓜廖尔校区的 MITS 太阳能实验室进行。在三种不同倾斜角度(11°、26°和 41°)和三种不同水深(4 cm、5 cm 和 10 cm)下对 SSs 进行实验后,观察到在冬季,玻璃的最佳倾斜角度覆盖面为 41°,最佳水深为 4 厘米。因此,在本文中,在最佳参数下验证了六种不同的热模型。使用不同热模型预测的产量通过实验产量进行验证。计算统计工具相关系数 (r) 和均方根百分比偏差 (e) 以显示实验值和预测值之间的误差。值得注意的是,对于所有模型和所有情况,相关系数 (r) 的值几乎为 0.99。Kumar 和 Tiwari 模型显示出与实验值更好的一致性,具有 ZnO 纳米流体、CuO 纳米流体和无纳米粒子的太阳能蒸馏器的最低产率百分比偏差分别为 8.41%、9.52% 和 9.89%。通过CuO纳米流体和ZnO纳米流体获得的馏出物比没有纳米粒子的水高约41.11%和9.75%,玻璃盖倾斜角为41°,水深为4 cm。值得注意的是,对于所有模型和所有情况,相关系数 (r) 的值几乎为 0.99。Kumar 和 Tiwari 模型显示出与实验值更好的一致性,具有 ZnO 纳米流体、CuO 纳米流体和无纳米粒子的太阳能蒸馏器的最低产率百分比偏差分别为 8.41%、9.52% 和 9.89%。通过CuO纳米流体和ZnO纳米流体获得的馏出物比没有纳米颗粒的水高约41.11%和9.75%,玻璃盖倾斜角为41°,水深为4 cm。值得注意的是,对于所有模型和所有情况,相关系数 (r) 的值几乎为 0.99。Kumar 和 Tiwari 模型显示出与实验值更好的一致性,具有 ZnO 纳米流体、CuO 纳米流体和无纳米粒子的太阳能蒸馏器的最低产率百分比偏差分别为 8.41%、9.52% 和 9.89%。通过CuO纳米流体和ZnO纳米流体获得的馏出物比没有纳米颗粒的水高约41.11%和9.75%,玻璃盖倾斜角为41°,水深为4 cm。

更新日期:2021-08-29
down
wechat
bug