当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast and robust two-dimensional inverse Laplace transformation of single-molecule fluorescence lifetime data
Biophysical Journal ( IF 3.2 ) Pub Date : 2021-08-28 , DOI: 10.1016/j.bpj.2021.08.031
Saurabh Talele 1 , John T King 2
Affiliation  

Fluorescence spectroscopy at the single-molecule scale has been indispensable for studying conformational dynamics and rare states of biological macromolecules. Single-molecule two-dimensional (2D) fluorescence lifetime correlation spectroscopy is an emerging technique that holds promise for the study of protein and nucleic acid dynamics, as the technique is 1) capable of resolving conformational dynamics using a single chromophore, 2) resolves forward and reverse transitions independently, and 3) has a dynamic window ranging from microseconds to seconds. However, the calculation of a 2D fluorescence relaxation spectrum requires an inverse Laplace transform (ILT), which is an ill-conditioned inversion that must be estimated numerically through a regularized minimization. Current methods for performing ILTs of fluorescence relaxation can be computationally inefficient, sensitive to noise corruption, and difficult to implement. Here, we adopt an approach developed for NMR spectroscopy (T1-T2 relaxometry) to perform one-dimensional (1D) and 2D-ILTs on single-molecule fluorescence spectroscopy data using singular-valued decomposition and Tikhonov regularization. This approach provides fast, robust, and easy to implement Laplace inversions of single-molecule fluorescence data. We compare this approach to the widely used maximal entropy method.



中文翻译:

单分子荧光寿命数据的快速且稳健的二维拉普拉斯逆变换

单分子尺度的荧光光谱对于研究生物大分子的构象动力学和稀有状态是必不可少的。单分子二维 (2D) 荧光寿命相关光谱是一种新兴技术,有望用于蛋白质和核酸动力学的研究,因为该技术 1) 能够使用单个生色团解析构象动力学,2) 正向解析和反向转换独立,并且 3) 具有从微秒到秒的动态窗口。然而,二维荧光弛豫光谱的计算需要拉普拉斯逆变换 (ILT),这是一种病态反演,必须通过正则化最小化进行数值估计。当前用于执行荧光弛豫 ILT 的方法在计算上可能效率低下、对噪声损坏敏感且难以实施。在这里,我们采用为 NMR 光谱(T1-T2 弛豫测量)开发的方法,使用奇异值分解和 Tikhonov 正则化对单分子荧光光谱数据执行一维(1D)和 2D-​​ILT。这种方法提供了快速、稳健且易于实施的单分子荧光数据的拉普拉斯反演。我们将这种方法与广泛使用的最大熵方法进行比较。我们采用一种为 NMR 光谱(T1-T2 弛豫测量)开发的方法,使用奇异值分解和 Tikhonov 正则化对单分子荧光光谱数据执行一维(1D)和 2D-​​ILT。这种方法提供了快速、稳健且易于实施的单分子荧光数据的拉普拉斯反演。我们将这种方法与广泛使用的最大熵方法进行比较。我们采用一种为 NMR 光谱(T1-T2 弛豫测量)开发的方法,使用奇异值分解和 Tikhonov 正则化对单分子荧光光谱数据执行一维(1D)和 2D-​​ILT。这种方法提供了快速、稳健且易于实施的单分子荧光数据的拉普拉斯反演。我们将这种方法与广泛使用的最大熵方法进行比较。

更新日期:2021-10-19
down
wechat
bug