当前位置: X-MOL 学术Micropor. Mesopor. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Niclosamide encapsulated in mesoporous silica and geopolymer: A potential oral formulation for COVID-19
Microporous and Mesoporous Materials ( IF 4.8 ) Pub Date : 2021-08-28 , DOI: 10.1016/j.micromeso.2021.111394
Huiyan Piao 1 , N Sanoj Rejinold 1 , Goeun Choi 1, 2, 3 , Yi-Rong Pei 1 , Geun-Woo Jin 4 , Jin-Ho Choy 1, 5, 6
Affiliation  

COVID-19 is a rapidly evolving emergency, for which there have been no specific medication found yet. Therefore, it is necessary to find a solution for this ongoing pandemic with the aid of advanced pharmaceutics. What is proposed as a solution is the repurposing of FDA approved drug such as niclosamide (NIC) having multiple pathways to inactivate the SARS-CoV-2, the specific virion that induces COVID-19. However, NIC is hardly soluble in an aqueous solution, thereby poor bioavailability, resulting in low drug efficacy. To overcome such a disadvantage, we propose here an oral formulation based on Tween 60 coated drug delivery system comprised of three different mesoporous silica biomaterials like MCM-41, SBA-15, and geopolymer encapsulated with NIC molecules. According to the release studies under a gastro/intestinal solution, the cumulative NIC release out of NIC-silica nanohybrids was found to be greatly enhanced to ~97% compared to the solubility of intact NIC (~40%) under the same condition. We also confirmed the therapeutically relevant bioavailability for NIC by performing pharmacokinetic (PK) study in rats with NIC-silica oral formulations. In addition, we discussed in detail how the PK parameters could be altered not only by the engineered porous structure and property, but also by interfacial interactions between ion-NIC dipole, NIC–NIC dipoles and/or pore wall-NIC van der Waals in the intra-pores of silica nanoparticles.



中文翻译:

包裹在介孔二氧化硅和地质聚合物中的氯硝柳胺:一种潜在的 COVID-19 口服制剂

COVID-19 是一种快速发展的紧急情况,目前还没有找到具体的药物。因此,有必要借助先进的药剂学为这场持续的大流行病找到解决方案。提议的解决方案是重新利用 FDA 批准的药物,例如氯硝柳胺 (NIC),该药物具有多种灭活 SARS-CoV-2 的途径,SARS-CoV-2 是诱导 COVID-19 的特定病毒体。但NIC难溶于水溶液,生物利用度差,药效低。为了克服这一缺点,我们在这里提出了一种基于吐温 60 涂层药物递送系统的口服制剂,该系统由三种不同的介孔二氧化硅生物材料组成,如 MCM-41、SBA-15 和用 NIC 分子封装的地质聚合物。根据胃/肠溶液下的释放研究,在相同条件下,与完整 NIC 的溶解度(~40%)相比,NIC-二氧化硅纳米杂化物的累积 NIC 释放显着提高至~97%。我们还通过在大鼠中使用 NIC-二氧化硅口服制剂进行药代动力学 (PK) 研究,证实了 NIC 的治疗相关生物利用度。此外,我们详细讨论了 PK 参数如何不仅可以通过工程多孔结构和性质改变,还可以通过离子-NIC 偶极子、NIC-NIC 偶极子和/或孔壁-NIC 范德瓦尔斯之间的界面相互作用来改变二氧化硅纳米颗粒的内孔。我们还通过在大鼠中使用 NIC-二氧化硅口服制剂进行药代动力学 (PK) 研究,证实了 NIC 的治疗相关生物利用度。此外,我们详细讨论了 PK 参数如何不仅可以通过工程多孔结构和性质改变,还可以通过离子-NIC 偶极子、NIC-NIC 偶极子和/或孔壁-NIC 范德瓦尔斯之间的界面相互作用来改变二氧化硅纳米颗粒的内孔。我们还通过在大鼠中使用 NIC-二氧化硅口服制剂进行药代动力学 (PK) 研究,证实了 NIC 的治疗相关生物利用度。此外,我们详细讨论了 PK 参数如何不仅可以通过工程多孔结构和性质改变,还可以通过离子-NIC 偶极子、NIC-NIC 偶极子和/或孔壁-NIC 范德瓦尔斯之间的界面相互作用来改变二氧化硅纳米颗粒的内孔。

更新日期:2021-09-03
down
wechat
bug