当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Active vibration control of an elastic rotor by using its deformation as controlled variable
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2021-08-29 , DOI: 10.1016/j.ymssp.2021.108371
Jens Jungblut 1 , Julia Haas 1 , Stephan Rinderknecht 1
Affiliation  

An elastic gyroscopic rotor system is modelled using the finite element method. The rotor is supported with two piezoelectric actuators which allow a dynamic manipulation of the rotational axis. The piezos are modelled as displacement actuators causing a base excitation. It is known from the literature that actively reducing the displacements of the rotor in the self-centring area leads to increasing bearing forces. We propose an approach which theoretically allows the use of the rotor displacements for active control without significantly increasing the bearing forces, even in the self-centring area. We use the relative displacements of the rotor for control which are proportional to the deformation of the rotor. The relative displacements are the difference between the absolute displacements, which describe the rotor centre, and a virtual active rotor axis which is a linear interpolation of the theoretically load-free actuator displacements of the piezos. A combination of integral force feedback and the least-mean-squares algorithm is chosen for control which takes full advantage of complex time signals. The analytic optimum of this control shows resonances which match with the resonances of the unsupported rotor if only the bearing forces are minimized. We refer to them as force-free resonances. While minimizing the absolute displacements in addition to the bearing forces only eliminates the first resonance, minimizing the relative displacements in addition eliminates all resonances. Using an additional weighting of the controller part prevents the force-free resonances and eliminates the difference between using the absolute and relative displacements. This is confirmed by experiments on the test-rig. However, there is no additional resonance when using the absolute displacement in addition to the bearing forces. Using the relative displacements allow for a higher reduction of the bearing forces caused by unbalance excitation in comparison to the absolute displacements when no weighting of the controller output is used. The test-rig results also show that it is not possible to eliminate the first conventional resonance peak which comprise forward and backward whirl vibrations by only controlling the bearing forces in the first bearing plane. The additional consideration of the absolute or relative displacements is able to eliminate these resonances with just a low increase of the bearing forces after the second resonance.



中文翻译:

以变​​形为控制变量的弹性转子振动主动控制

使用有限元方法对弹性陀螺转子系统进行建模。转子由两个压电致动器支撑,允许动态操纵旋转轴。压电体被建模为引起基础激励的位移致动器。从文献中可知,主动减少转子在自定心区域的位移会导致轴承力的增加。我们提出了一种理论上允许使用转子位移进行主动控制而不显着增加轴承力的方法,即使在自定心区域也是如此。我们使用转子的相对位移进行控制,该位移与转子的变形成正比。相对位移是描述转子中心的绝对位移之间的差,以及虚拟主动转子轴,它是压电元件理论上无负载的致动器位移的线性插值。选择积分力反馈和最小均方算法的组合进行控制,充分利用复杂的时间信号。如果仅最小化轴承力,则该控制的分析优化显示与无支撑转子的共振匹配的共振。我们将它们称为无力共振。除了轴承力之外,最小化绝对位移只会消除第一次共振,同时最小化相对位移会消除所有共振。使用控制器部分的额外加权可防止无力共振并消除使用绝对位移和相对位移之间的差异。这在测试台上的实验得到证实。但是,除了轴承力之外,在使用绝对位移时没有额外的共振。与不使用控制器输出权重时的绝对位移相比,使用相对位移允许更大程度地减少由不平衡激励引起的轴承力。试验台的结果还表明,仅通过控制第一轴承平面中的轴承力是不可能消除第一个常规共振峰的,该共振峰包括向前和向后的旋转振动。对绝对或相对位移的额外考虑能够消除这些共振,而在第二次共振后只需少量增加轴承力。除了轴承力之外,在使用绝对位移时没有额外的共振。与不使用控制器输出权重时的绝对位移相比,使用相对位移允许更大程度地减少由不平衡激励引起的轴承力。试验台的结果还表明,仅通过控制第一轴承平面中的轴承力是不可能消除第一个常规共振峰的,该共振峰包括向前和向后的旋转振动。对绝对或相对位移的额外考虑能够消除这些共振,而在第二次共振后只需少量增加轴承力。除了轴承力之外,在使用绝对位移时没有额外的共振。与不使用控制器输出权重时的绝对位移相比,使用相对位移允许更大程度地减少由不平衡激励引起的轴承力。试验台的结果还表明,仅通过控制第一轴承平面中的轴承力是不可能消除第一个常规共振峰的,该共振峰包括向前和向后的旋转振动。对绝对或相对位移的额外考虑能够消除这些共振,而在第二次共振后只需少量增加轴承力。与不使用控制器输出权重时的绝对位移相比,使用相对位移允许更大程度地减少由不平衡激励引起的轴承力。试验台的结果还表明,仅通过控制第一轴承平面中的轴承力是不可能消除第一个常规共振峰的,该共振峰包括向前和向后的旋转振动。对绝对或相对位移的额外考虑能够消除这些共振,而在第二次共振后只需少量增加轴承力。与不使用控制器输出权重时的绝对位移相比,使用相对位移允许更大程度地减少由不平衡激励引起的轴承力。试验台的结果还表明,仅通过控制第一轴承平面中的轴承力是不可能消除第一个常规共振峰的,该共振峰包括向前和向后的旋转振动。对绝对或相对位移的额外考虑能够消除这些共振,而在第二次共振后只需少量增加轴承力。试验台的结果还表明,仅通过控制第一轴承平面中的轴承力是不可能消除第一个常规共振峰的,该共振峰包括向前和向后的旋转振动。对绝对或相对位移的额外考虑能够消除这些共振,而在第二次共振后只需少量增加轴承力。试验台的结果还表明,仅通过控制第一轴承平面中的轴承力是不可能消除第一个常规共振峰的,该共振峰包括向前和向后的旋转振动。对绝对或相对位移的额外考虑能够消除这些共振,而在第二次共振后只需少量增加轴承力。

更新日期:2021-08-29
down
wechat
bug