当前位置: X-MOL 学术Journal of Theoretical and Applied Mechanics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of a micro-model for concrete to the simulation of crack propagation
Theoretical and Applied Fracture Mechanics ( IF 5.0 ) Pub Date : 2021-08-28 , DOI: 10.1016/j.tafmec.2021.103081
Rong-xin Peng 1 , Wen-liang Qiu 1 , Meng Jiang 2
Affiliation  

The PeriDynamics (PD) model of material fracture can simulate the nucleation and propagation of cracks naturally with a simple bond breakage criterion. Combined with its advantages in multi-scale, the crack characteristics of concrete can be simulated from micro-scale. Therefore, the micro-calculation model of concrete was established by the spherical growth model based on the MATLAB-ABAQUS co-simulation method. Meanwhile, combined with the plastic softening characteristics of concrete, a quasi-plastic damage fracture constitutive model for concrete was established. Finally, the mode-I fracture test and two typical mixed-mode fracture tests were simulated by this model, and the PD-FEM (finite element method) method was used to reduce the calculation cost, in which the cracking regions were set as the PD model and other regions were set as the FEM model. The results show that the crack initiation and propagation of different calculation samples can be well described by the calculation model. Moreover, the proposed material model can better reflect the comprehensive mechanical behavior of concrete, and the crack path of the specimens is consistent with the test results. For the simulation of the I-II (tension shear) mixed fracture test, the crack paths of different calculation samples with small shear load are obviously different, and the range of crack paths can be predicted by the simulation of calculation samples. Furthermore, for the calculation samples with large shear load, the crack path and macro-behavior of different calculation samples are close to each other.



中文翻译:

混凝土微观模型在裂纹扩展模拟中的应用

材料断裂的 PeriDynamics (PD) 模型可以通过简单的键断裂准则来模拟裂纹的自然形核和扩展。结合其在多尺度上的优势,可以从微观尺度模拟混凝土的裂缝特征。因此,采用基于MATLAB-ABAQUS联合仿真方法的球形生长模型建立混凝土的微观计算模型。同时,结合混凝土的塑性软化特性,建立了混凝土的准塑性损伤断裂本构模型。最后,通过该模型模拟了I型断裂试验和两种典型的混合模式断裂试验,并采用PD-FEM(有限元法)方法降低了计算成本,其中裂纹区域设置为PD模型,其他区域设置为FEM模型。结果表明,计算模型可以很好地描述不同计算样本的裂纹萌生和扩展过程。而且,所提出的材料模型能更好地反映混凝土的综合力学行为,试件的裂纹路径与试验结果一致。对于I-II(拉伸剪切)混合断裂试验的模拟,不同剪切载荷的计算样本的裂纹路径明显不同,通过计算样本的模拟可以预测裂纹路径的范围。此外,对于剪切载荷较大的计算样本,不同计算样本的裂纹路径和宏观行为相互接近。结果表明,计算模型可以很好地描述不同计算样本的裂纹萌生和扩展过程。而且,所提出的材料模型能更好地反映混凝土的综合力学行为,试件的裂纹路径与试验结果一致。对于I-II(拉伸剪切)混合断裂试验的模拟,不同剪切载荷的计算样本的裂纹路径明显不同,通过计算样本的模拟可以预测裂纹路径的范围。此外,对于剪切载荷较大的计算样本,不同计算样本的裂纹路径和宏观行为相互接近。结果表明,计算模型可以很好地描述不同计算样本的裂纹萌生和扩展过程。而且,所提出的材料模型能更好地反映混凝土的综合力学行为,试件的裂纹路径与试验结果一致。对于I-II(拉伸剪切)混合断裂试验的模拟,不同剪切载荷的计算样本的裂纹路径明显不同,通过计算样本的模拟可以预测裂纹路径的范围。此外,对于剪切载荷较大的计算样本,不同计算样本的裂纹路径和宏观行为相互接近。所提出的材料模型能较好地反映混凝土的综合力学行为,试件的裂纹路径与试验结果一致。对于I-II(拉伸剪切)混合断裂试验的模拟,不同剪切载荷的计算样本的裂纹路径明显不同,通过计算样本的模拟可以预测裂纹路径的范围。此外,对于剪切载荷较大的计算样本,不同计算样本的裂纹路径和宏观行为相互接近。所提出的材料模型能较好地反映混凝土的综合力学行为,试件的裂纹路径与试验结果一致。对于I-II(拉伸剪切)混合断裂试验的模拟,不同剪切载荷的计算样本的裂纹路径明显不同,通过计算样本的模拟可以预测裂纹路径的范围。此外,对于剪切载荷较大的计算样本,不同计算样本的裂纹路径和宏观行为相互接近。不同剪切载荷的计算样本的裂纹路径明显不同,通过计算样本的模拟可以预测裂纹路径的范围。此外,对于剪切载荷较大的计算样本,不同计算样本的裂纹路径和宏观行为相互接近。不同剪切载荷的计算样本的裂纹路径明显不同,通过计算样本的模拟可以预测裂纹路径的范围。此外,对于剪切载荷较大的计算样本,不同计算样本的裂纹路径和宏观行为相互接近。

更新日期:2021-09-10
down
wechat
bug