当前位置: X-MOL 学术Commun. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Persistent fluid flows defined by active matter boundaries
Communications Physics ( IF 5.5 ) Pub Date : 2021-08-27 , DOI: 10.1038/s42005-021-00703-3
Zijie Qu 1 , Dominik Schildknecht 1 , Shahriar Shadkhoo 1 , Enrique Amaya 1 , Jialong Jiang 1 , David Larios 1 , Fan Yang 1 , Rob Phillips 1, 2, 3 , Matt Thomson 1 , Heun Jin Lee 2
Affiliation  

Biological systems control ambient fluids through the self-organization of active protein structures, including flagella, cilia, and cytoskeletal networks. Self-organization of protein components enables the control and modulation of fluid flow fields on micron scales, however, the physical principles underlying the organization and control of active-matter-driven fluid flows are poorly understood. Here, we use an optically-controlled active-matter system composed of microtubule filaments and light-switchable kinesin motor proteins to analyze the emergence of persistent flow fields. Using light, we form contractile microtubule networks of varying size and shape, and demonstrate that the geometry of microtubule flux at the corners of contracting microtubule networks predicts the architecture of fluid flow fields across network geometries through a simple point force model. Our work provides a foundation for programming microscopic fluid flows with controllable active matter and could enable the engineering of versatile and dynamic microfluidic devices.



中文翻译:

由活性物质边界定义的持久流体流动

生物系统通过活性蛋白质结构(包括鞭毛、纤毛和细胞骨架网络)的自组织来控制环境流体。蛋白质组分的自组织能够在微米尺度上控制和调节流体流场,但是,对活性物质驱动的流体流动的组织和控制的物理原理知之甚少。在这里,我们使用由微管丝和光控驱动蛋白运动蛋白组成的光控活性物质系统来分析持续流场的出现。利用光,我们形成了不同大小和形状的可收缩微管网络,并证明收缩微管网络拐角处的微管通量几何结构通过简单的点力模型预测了网络几何结构中的流体流场结构。我们的工作为编程具有可控活性物质的微观流体流动提供了基础,并且可以实现多功能和动态微流体设备的工程设计。

更新日期:2021-08-27
down
wechat
bug