当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in Surface passivation of perovskites using Organic halide salts for efficient and stable solar cells
Surfaces and Interfaces ( IF 5.7 ) Pub Date : 2021-08-27 , DOI: 10.1016/j.surfin.2021.101420
Girish K H 1
Affiliation  

Perovskite solar cells have shown tremendous progress in their efficiencies over a short time period. However, limitations such as defects and stability of perovskites have hindered their further progress. The major contributors that decrease the power conversion efficiency and open-circuit voltage of perovskite solar cells are the surface recombination of photoexcited charges and the degradation of absorber materials under different environmental conditions. Over the years, passivating the surface defects have been adopted to increase the charge carrier lifetime and reduce the surface traps thus increasing the charge collection efficiency at the electrodes. In particular, the use of organic halide salts to passivate perovskite surfaces have been studied extensively. The hydrophobicity of organic halide salts also aids in enhancing the moisture stability of perovskite solar cells. In this review, an overview of recent advances in organic halide salts for passivating perovskite surfaces is provided. Along with elucidating the influence of process parameters on surface defects, the importance of passivating the surface defects in perovskite materials is discussed. With greater emphasis on device parameters such as carrier lifetime, trap density and power conversion efficiency, the different organic halide salts used to enhance these parameters are individually described in detail. Further, a summary of device performance and stability of surface passivated perovskite solar cells is provided along with existing challenges.



中文翻译:

使用有机卤化物盐对钙钛矿进行表面钝化以实现高效稳定的太阳能电池的进展

钙钛矿太阳能电池在短时间内显示出其效率的巨大进步。然而,钙钛矿的缺陷和稳定性等局限性阻碍了它们的进一步发展。降低钙钛矿太阳能电池功率转换效率和开路电压的主要原因是光激发电荷的表面复合和不同环境条件下吸收材料的降解。多年来,已采用钝化表面缺陷来增加电荷载流子寿命并减少表面陷阱,从而提高电极处的电荷收集效率。特别是,已经广泛研究了使用有机卤化物盐钝化钙钛矿表面。有机卤化物盐的疏水性也有助于提高钙钛矿太阳能电池的水分稳定性。在这篇综述中,概述了用于钝化钙钛矿表面的有机卤化物盐的最新进展。在阐明工艺参数对表面缺陷的影响的同时,还讨论了钝化钙钛矿材料表面缺陷的重要性。随着对载流子寿命、陷阱密度和功率转换效率等器件参数的更加重视,用于增强这些参数的不同有机卤化物盐被单独详细描述。此外,还提供了表面钝化钙钛矿太阳能电池的器件性能和稳定性的摘要以及现有的挑战。概述了用于钝化钙钛矿表面的有机卤化物盐的最新进展。在阐明工艺参数对表面缺陷的影响的同时,还讨论了钝化钙钛矿材料表面缺陷的重要性。随着对载流子寿命、陷阱密度和功率转换效率等器件参数的更加重视,用于增强这些参数的不同有机卤化物盐被单独详细描述。此外,还提供了表面钝化钙钛矿太阳能电池的器件性能和稳定性的摘要以及现有的挑战。概述了用于钝化钙钛矿表面的有机卤化物盐的最新进展。在阐明工艺参数对表面缺陷的影响的同时,还讨论了钝化钙钛矿材料表面缺陷的重要性。随着对载流子寿命、陷阱密度和功率转换效率等器件参数的更加重视,用于增强这些参数的不同有机卤化物盐被单独详细描述。此外,还提供了表面钝化钙钛矿太阳能电池的器件性能和稳定性的摘要以及现有的挑战。讨论了钝化钙钛矿材料表面缺陷的重要性。随着对载流子寿命、陷阱密度和功率转换效率等器件参数的更加重视,用于增强这些参数的不同有机卤化物盐被单独详细描述。此外,还提供了表面钝化钙钛矿太阳能电池的器件性能和稳定性的摘要以及现有的挑战。讨论了钝化钙钛矿材料表面缺陷的重要性。随着对载流子寿命、陷阱密度和功率转换效率等器件参数的更加重视,用于增强这些参数的不同有机卤化物盐被单独详细描述。此外,还提供了表面钝化钙钛矿太阳能电池的器件性能和稳定性的摘要以及现有的挑战。

更新日期:2021-08-27
down
wechat
bug