当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Series of charge transfer complexes obtained as crystals in a confined environment
CrystEngComm ( IF 2.6 ) Pub Date : 2021-08-20 , DOI: 10.1039/d1ce00929j
Ali Sanda Bawa 1, 2 , Rita Meunier-Prest 1 , Yoann Rousselin 1 , Jean-Pierre Couvercelle 1 , Christine Stern 1 , Bernard Malézieux 3 , Marcel Bouvet 1
Affiliation  

A series of charge transfer complexes (CTCs) were successfully formed by solvent free processing techniques, using the 1,2,4,5-tetracyano benzene (TCNB) as πA molecule and a series of p-dihydroquinones (H2Qs) as πD counterparts. Additionally to the classical co-evaporation techniques, we obtained CTCs in less than an hour, in a very simple confined environment, between two 100 μm – spaced glass plates. A systematical study by Raman spectroscopy on crystals highlighted the CTCs formation. Moreover, three new crystalline structures were obtained, namely TCNB-H2Q that crystallizes in columns connected to each other by H-bonds, while with the methoxy- and dimethoxy-H2Qs the CTC forms crystals with the stoichiometry 1 : 2, TCNB-(H2QOMe)2 and TCNB-(H2QOMe2)2. In TCNB-(H2QOMe)2 layers are formed due to intermolecular hydrogen bonds, while in TCNB-(H2QOMe2)2 molecules arrange in triads, with πA–πD interactions. In all cases, strong πA–πD interactions exist with intermolecular distances lower than the van der Waals distances, which results in strong absorption bands in the visible range.

中文翻译:

在密闭环境中以晶体形式获得的一系列电荷转移复合物

一系列的电荷转移复合物(CTC的)成功地被无溶剂加工技术形成,使用1,2,4,5-四氰基苯(TCNB)作为π分子和一系列p -dihydroquinones(H 2 QS)作为π D对应物。除了经典的共蒸发技术之外,我们在一个非常简单的密闭环境中,在两个 100 μm 间隔的玻璃板之间,在不到一个小时的时间内获得了 CTC。拉曼光谱对晶体的系统研究强调了 CTC 的形成。此外,获得了三种新的晶体结构,即 TCNB-H 2 Q,它在通过 H 键相互连接的柱子中结晶,而甲氧基-和二甲氧基-H 2Qs CTC 形成化学计量比为 1:2 的晶体,TCNB-(H 2 Q OMe ) 2和 TCNB-(H 2 Q OMe 2 ) 2。在 TCNB-(H 2 Q OMe ) 2层由于分子间氢键形成,而在 TCNB-(H 2 Q OMe 2 ) 2分子排列成三元组,具有 π AD相互作用。在所有情况下,强 π A –π D 分子间距离低于范德华距离时存在相互作用,这导致在可见光范围内产生强吸收带。
更新日期:2021-08-27
down
wechat
bug