当前位置: X-MOL 学术Plant Soil › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Identification of barley genetic regions influencing plant–microbe interactions and carbon cycling in soil
Plant and Soil ( IF 4.9 ) Pub Date : 2021-08-26 , DOI: 10.1007/s11104-021-05113-6
Lumbani Mwafulirwa 1, 2 , Elizabeth M. Baggs 1 , Eric Paterson 2 , Joanne Russell 3 , Christine A. Hackett 4 , Nick Morley 5 , Carla de la Fuente Cantó 6
Affiliation  

Purpose

Rhizodeposition shapes soil microbial communities that perform important processes such as soil C mineralization, but we have limited understanding of the plant genetic regions influencing soil microbes. Here, barley chromosome regions affecting soil microbial biomass-C (MBC), dissolved organic-C (DOC) and root biomass were characterised.

Methods

A quantitative trait loci analysis approach was applied to identify barley chromosome regions affecting soil MBC, soil DOC and root biomass. This was done using barley Recombinant Chromosome Substitution Lines (RCSLs) developed with a wild accession (Caesarea 26-24) as a donor parent and an elite cultivar (Harrington) as recipient parent.

Results

Significant differences in root-derived MBC and DOC and root biomass among these RCSLs were observed. Analysis of variance using single nucleotide polymorphisms genotype classes revealed 16 chromosome regions influencing root-derived MBC and DOC. Of these chromosome regions, five on chromosomes 2H, 3H and 7H were highly significant and two on chromosome 3H influenced both root-derived MBC and DOC. Potential candidate genes influencing root-derived MBC and DOC concentrations in soil were identified.

Conclusion

The present findings provide new insights into the barley genetic influence on soil microbial communities. Further work to verify these barley chromosome regions and candidate genes could promote marker assisted selection and breeding of barley varieties that are able to more effectively shape soil microbes and soil processes via rhizodeposition, supporting sustainable crop production systems.



中文翻译:

鉴定影响土壤中植物-微生物相互作用和碳循环的大麦遗传区域

目的

根际沉积塑造了土壤微生物群落,这些微生物群落执行土壤 C 矿化等重要过程,但我们对影响土壤微生物的植物遗传区域的了解有限。在这里,对影响土壤微生物生物量-C (MBC)、溶解有机-C (DOC) 和根生物量的大麦染色体区域进行了表征。

方法

应用数量性状位点分析方法来鉴定影响土壤 MBC、土壤 DOC 和根生物量的大麦染色体区域。这是使用以野生种质 (Caesarea 26-24) 作为供体亲本和以优良品种 (Harrington) 作为受体亲本开发的大麦重组染色体替代系 (RCSL) 来完成的。

结果

观察到这些 RCSL 之间根源性 MBC 和 DOC 以及根生物量的显着差异。使用单核苷酸多态性基因型类别的方差分析揭示了影响根源性 MBC 和 DOC 的 16 个染色体区域。在这些染色体区域中,染色体 2H、3H 和 7H 上的五个高度显着,染色体 3H 上的两个影响根源性 MBC 和 DOC。确定了影响土壤中根源性 MBC 和 DOC 浓度的潜在候选基因。

结论

目前的发现为大麦遗传对土壤微生物群落的影响提供了新的见解。验证这些大麦染色体区域和候选基因的进一步工作可以促进大麦品种的标记辅助选择和育种,这些大麦品种能够通过根际沉积更有效地塑造土壤微生物和土壤过程,支持可持续的作物生产系统。

更新日期:2021-08-26
down
wechat
bug