当前位置: X-MOL 学术J. Nanopart. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and simulation studies to determine the mechanisms of catalyst formation for the targeted synthesis of carbon nanotubes
Journal of Nanoparticle Research ( IF 2.1 ) Pub Date : 2021-08-26 , DOI: 10.1007/s11051-021-05320-3
Imran Ali 1 , Elena Burakova 2 , Alexey Tkachev 2 , Evgeny Tugolukov 2 , Tatyana Dyachkova 2 , Artem Rukhov 2 , Abdulraheem S. A. Almalki 3 , Rami J. Obaid 4 , Meshari A. Alsharif 4
Affiliation  

For the first time, experimental and simulation studies were carried out to determine the mechanisms of catalyst formation for the targeted synthesis of carbon nanotubes. The geometry of the molecular system of a solution of the initial components of a Ni/MgO catalyst has been calculated and modeled using the molecular mechanics method. During the catalyst preparation, ionic complexes were formed, the core of which comprised amino acetic acid molecules held by hydrogen bonds. The structure and properties of the catalytic system depended on the effect and state of these ionic complexes, making possible to explain the observed effects in the process of catalyst formation. The treatment of a solution of Ni/0.3 MgO catalyst in a microwave field (2.45 GHz) promoted the formation of the most efficient catalyst for almost 2 times increased selectivity and productivity for the synthesis of CNTs. A microwave field was a controlling factor for the specified catalytic characteristics, ensuring the directed synthesis of CNTs by the method of gas-phase chemical deposition. This method resulted in the synthesis of carbon nanotubes with an outer diameter of 15–60 nm and a degree of defectiveness (ID/G) of ~ 0.9–1.4. The method is economic for the preparation of CNTs of the desired dimension. The prepared CNTs were used for packing gas chromatographic column, which performed well for separating a mixture of propane, butane, and atmospheric air. The reported method may be used to prepare CNTs of required properties for a variety of applications.

Graphical abstract



中文翻译:

用于确定碳纳米管靶向合成催化剂形成机制的实验和模拟研究

首次进行了实验和模拟研究,以确定碳纳米管靶向合成的催化剂形成机制。使用分子力学方法计算和模拟了 Ni/MgO 催化剂初始组分溶液的分子系统几何形状。在催化剂制备过程中,形成了离子复合物,其核心包含由氢键连接的氨基乙酸分子。催化体系的结构和性质取决于这些离子络合物的作用和状态,从而可以解释在催化剂形成过程中观察到的作用。Ni/0.3 MgO催化剂溶液在微波场中的处理(2. 45 GHz)促进了最有效催化剂的形成,使碳纳米管合成的选择性和生产率提高了近 2 倍。微波场是特定催化特性的控制因素,确保通过气相化学沉积方法直接合成碳纳米管。该方法合成了外径为 15-60 nm 且缺陷度 (ID/G) 为~0.9-1.4 的碳纳米管。该方法对于制备所需尺寸的碳纳米管是经济的。制备的碳纳米管用于填充气相色谱柱,在分离丙烷、丁烷和大气的混合物方面表现良好。所报告的方法可用于制备具有各种应用所需特性的碳纳米管。微波场是特定催化特性的控制因素,确保通过气相化学沉积方法直接合成碳纳米管。该方法合成了外径为 15-60 nm 且缺陷度 (ID/G) 为~0.9-1.4 的碳纳米管。该方法对于制备所需尺寸的碳纳米管是经济的。制备的碳纳米管用于填充气相色谱柱,在分离丙烷、丁烷和大气的混合物方面表现良好。所报告的方法可用于制备具有各种应用所需特性的碳纳米管。微波场是特定催化特性的控制因素,确保通过气相化学沉积方法直接合成碳纳米管。该方法合成了外径为 15-60 nm 且缺陷度 (ID/G) 为~0.9-1.4 的碳纳米管。该方法对于制备所需尺寸的碳纳米管是经济的。制备的碳纳米管用于填充气相色谱柱,在分离丙烷、丁烷和大气的混合物方面表现良好。所报告的方法可用于制备具有各种应用所需特性的碳纳米管。该方法合成了外径为 15-60 nm 且缺陷度 (ID/G) 为~0.9-1.4 的碳纳米管。该方法对于制备所需尺寸的碳纳米管是经济的。制备的碳纳米管用于填充气相色谱柱,在分离丙烷、丁烷和大气的混合物方面表现良好。所报告的方法可用于制备具有各种应用所需特性的碳纳米管。该方法合成了外径为 15-60 nm 且缺陷度 (ID/G) 为~0.9-1.4 的碳纳米管。该方法对于制备所需尺寸的碳纳米管是经济的。制备的碳纳米管用于填充气相色谱柱,在分离丙烷、丁烷和大气的混合物方面表现良好。所报告的方法可用于制备具有各种应用所需特性的碳纳米管。

图形概要

更新日期:2021-08-26
down
wechat
bug