当前位置: X-MOL 学术Combinatorica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
More on the Extremal Number of Subdivisions
Combinatorica ( IF 1.0 ) Pub Date : 2021-08-26 , DOI: 10.1007/s00493-020-4202-1
David Conlon 1 , Joonkyung Lee 2 , Oliver Janzer 3
Affiliation  

Given a graph H, the extremal number ex(n, H) is the largest number of edges in an H-free graph on n vertices. We make progress on a number of conjectures about the extremal number of bipartite graphs. First, writing \(K_{s,t}^\prime \) for the subdivision of the bipartite graph Ks,t, we show that \({\rm{ex}}(n,K_{s,t}^\prime ) = O({n^{3/2 - {1 \over {2s}}}})\). This proves a conjecture of Kang, Kim and Liu and is tight up to the implied constant for t sufficiently large in terms of s. Second, for any integers s,k ≥ 1, we show that \({\rm{ex}}(n,L) = \Theta ({n^{1 + {s \over <Stack><Subscript>+ 1</Subscript></Stack>}}})\) for a particular graph L depending on s and k, answering another question of Kang, Kim and Liu. This result touches upon an old conjecture of Erdős and Simonovits, which asserts that every rational number r ∈ (1, 2) is realisable in the sense that ex(n, H) = Θ(nr) for some appropriate graph H, giving infinitely many new realisable exponents and implying that 1 + 1/k is a limit point of realisable exponents for all k ≥ 1. Writing Hk for the k-subdivision of a graph H, this result also implies that for any bipartite graph H and any k, there exists δ > 0 such that ex(n, Hk−1) = O(n1+1/kδ), partially resolving a question of Conlon and Lee. Third, extending a recent result of Conlon and Lee, we show that any bipartite graph H with maximum degree r on one side which does not contain C4 as a subgraph satisfies ex(n, H) = o(n2−1/r).



中文翻译:

有关细分的极值数量的更多信息

给定图H,极值数 ex( n, H ) 是n个顶点上的无H图中的最大边数。我们在关于二部图的极值数的许多猜想上取得了进展。首先,写\(K_{s,t}^\prime \)为二部图K s,t的细分,我们证明\({\rm{ex}}(n,K_{s,t}^ \prime ) = O({n^{3/2 - {1 \over {2s}}}})\)。这证明了 Kang、Kim 和 Liu 的猜想,并且对于ts而言足够大的隐含常数很严格。其次,对于任何整数s,k ≥ 1,我们证明\({\rm{ex}}(n,L) = \Theta ({n^{1 + {s \over <Stack><Subscript>+ 1</Subscript></Stack>}}})\)对于取决于sk的特定图L,回答 Kang、Kim 和 Liu 的另一个问题。这个结果涉及到 Erdős 和 Simonovits 的一个旧猜想,该猜想断言每个有理数r ∈ (1, 2) 都是可实现的,因为对于一些合适的图H,ex( n, H ) = Θ ( n r ) ,给出无限多个新的可实现指数并暗示 1 + 1/ k是所有k ≥ 1的可实现指数的极限点。 写作H k对于图Hk细分,该结果还暗示对于任何二部图H和任何k,存在δ > 0 使得 ex( n, H k -1 ) = O ( n 1+1/ k - δ ),部分解决了 Conlon 和 Lee 的问题。第三,扩展 Conlon 和 Lee 的最新结果,我们证明任何在一侧具有最大度数 r 且不包含C 4作为子图的二部图H满足 ex( n, H ) = o ( n 2−1/ r)。

更新日期:2021-08-26
down
wechat
bug