当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comprehensive study on low-temperature oxidation chemistry of cyclohexane. II. Experimental and kinetic modeling investigation
Combustion and Flame ( IF 4.4 ) Pub Date : 2021-08-25 , DOI: 10.1016/j.combustflame.2021.111550
Jiabiao Zou 1 , Hanfeng Jin 2 , Dapeng Liu 2 , Xiaoyuan Zhang 1, 2 , Huaijiang Su 3 , Jiuzhong Yang 3 , Aamir Farooq 2 , Yuyang Li 1
Affiliation  

Low-temperature oxidation of cyclohexane is investigated in two jet-stirred reactors (JSRs) at 1.04 bar and the equivalence ratio of 0.25. Reactive hydroperoxides and highly oxygenated molecules are detected using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The isomers of C6H10O (5-hexenal, cyclic ethers and cyclohexanone) are separated using gas chromatography combined with mass spectrometry (GC–MS). Detection of characteristic hydroperoxides verifies that the conventional two-stage oxygen addition channels and recently reported third oxygen addition channels both contribute to the low-temperature oxidation of cyclohexane. Conformation-dependent channels theoretically investigated in Part I of this work are found correlated with the experimental observations of ketohydroperoxide (KHP) and alkenyl-hydroperoxide (AnHP) intermediates. A new detailed kinetic model of cyclohexane oxidation is constructed with consideration of the investigated conformation-dependent pathways in Part I and the experimental revisit of OH attack reactions over 889–1301 K and 1.22–1.84 bar. The model is validated against the newly measured oxidation data in this work and previous experimental data over a variety of pressure, temperature and equivalence ratio conditions. Modeling analysis reveals that the KHP channel and AnHP channel dominate the chain-branching process under the investigated conditions. The third oxygen addition channels and bimolecular reaction channels are found to play less important roles under the investigated conditions, while these reactions can provide more significant contributions to OH formation under high-pressure and lean conditions.



中文翻译:

环己烷低温氧化化学综合研究[J]. 二、实验和动力学模型研究

在两个喷射搅拌反应器 (JSR) 中,在 1.04 bar 和 0.25 当量比下研究了环己烷的低温氧化。使用同步加速器真空紫外光电离质谱 (SVUV-PIMS) 检测反应性氢过氧化物和高度氧化的分子。C 6 H 10的异构体O(5-己烯醛、环醚和环己酮)使用气相色谱与质谱联用 (GC-MS) 进行分离。特征氢过氧化物的检测证实了传统的两级氧添加通道和最近报道的第三氧添加通道都有助于环己烷的低温氧化。发现在本工作的第一部分理论上研究的构象依赖性通道与酮氢过氧化物 (KHP) 和烯基氢过氧化物 (AnHP) 中间体的实验观察相关。考虑到第 I 部分中研究的构象依赖性途径以及 889–1301 K 和 1.22–1.84 bar 上 OH 攻击反应的实验重新审视,构建了一个新的环己烷氧化的详细动力学模型。该模型根据这项工作中新测量的氧化数据和先前在各种压力、温度和当量比条件下的实验数据进行了验证。建模分析表明,在研究条件下,KHP 通道和 AnHP 通道在链分支过程中占主导地位。第三个氧加成通道和双分子反应通道在所研究的条件下发挥的作用较小,而这些反应可以在高压和贫油条件下对 OH 形成提供更显着的贡献。

更新日期:2021-08-25
down
wechat
bug