当前位置: X-MOL 学术Phys. B Condens. Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of chemically sprayed ZnS films by Mn doping
Physica B: Condensed Matter ( IF 2.8 ) Pub Date : 2021-08-25 , DOI: 10.1016/j.physb.2021.413353
Barbaros Demirselcuk 1 , Esra Kus 2 , Ayse Kucukarslan 3, 4 , Emrah Sarica 4, 5 , Idris Akyuz 6 , Vildan Bilgin 3, 4
Affiliation  

In this study, undoped and Mn doped ZnS films were grown on microscope glass substrates at substrate temperature of 400 ± 5 °C by using a low cost Ultrasonic Spray Pyrolysis technique, and the effect of Mn doping on some physical properties of ZnS films was investigated. Structural, optical, electrical and morphological properties of all films were analyzed using X-ray diffractometer (XRD), UV–Vis spectrophotometer, two-probe technique and atomic force microscope (AFM), respectively. X-ray diffraction studies showed that all films were formed in ZnS hexagonal structure and the crystallization levels of the films were relatively improved due to the increase in the Mn doping ratio, especially for 4% doped films. It was determined that the average transmittance value of undoped ZnS film in the visible region is 38% and this value increases to 60% for the sample doped by Mn at the highest rate (12%). The band gap values of the films were calculated using the Tauc equation and determined to be between 3.82 and 3.94 eV. Electrical resistivity values of the films decreased significantly due to the Mn doping. Mn doping also caused ZnS films to have uniform surface morphologies consisting of noticeable particle formations. Figure of merit calculations showed that Mn doping has a favorable effect on ZnS films and ZnS:Mn (12%) films may be promising materials for applications such as photovoltaic solar cells and optoelectronic devices.



中文翻译:

Mn掺杂对化学喷涂ZnS薄膜的优化

在这项研究中,使用低成本的超声喷雾热解技术在 400 ± 5 °C 的基板温度下在显微镜玻璃基板上生长未掺杂和 Mn 掺杂的 ZnS 薄膜,并研究了 Mn 掺杂对 ZnS 薄膜的一些物理性能的影响. 分别使用 X 射线衍射仪 (XRD)、紫外-可见分光光度计、双探针技术和原子力显微镜 (AFM) 分析所有薄膜的结构、光学、电学和形态学特性。X射线衍射研究表明,所有薄膜均以ZnS六方结构形成,并且由于Mn掺杂比例的增加,薄膜的结晶水平相对提高,特别是对于4%掺杂的薄膜。经测定,未掺杂的 ZnS 薄膜在可见光区的平均透射率为 38%,对于以最高比率(12%)掺杂 Mn 的样品,该值增加到 60%。使用 Tauc 方程计算薄膜的带隙值并确定在 3.82 和 3.94 eV 之间。由于Mn掺杂,薄膜的电阻率值显着降低。Mn 掺杂还导致 ZnS 薄膜具有均匀的表面形态,包括明显的颗粒形成。品质因数计算表明,Mn 掺杂对 ZnS 薄膜有有利影响,而 ZnS:Mn (12%) 薄膜可能是用于光伏太阳能电池和光电器件等应用的有前途的材料。使用 Tauc 方程计算薄膜的带隙值并确定在 3.82 和 3.94 eV 之间。由于Mn掺杂,薄膜的电阻率值显着降低。Mn 掺杂还导致 ZnS 薄膜具有均匀的表面形态,包括明显的颗粒形成。品质因数计算表明,Mn 掺杂对 ZnS 薄膜有有利影响,而 ZnS:Mn (12%) 薄膜可能是用于光伏太阳能电池和光电器件等应用的有前途的材料。使用 Tauc 方程计算薄膜的带隙值并确定在 3.82 和 3.94 eV 之间。由于Mn掺杂,薄膜的电阻率值显着降低。Mn 掺杂还导致 ZnS 薄膜具有均匀的表面形态,包括明显的颗粒形成。品质因数计算表明,Mn 掺杂对 ZnS 薄膜有有利影响,而 ZnS:Mn (12%) 薄膜可能是用于光伏太阳能电池和光电器件等应用的有前途的材料。

更新日期:2021-08-29
down
wechat
bug