当前位置: X-MOL 学术Mol. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D mesoporous ultra-thin g-C3N4 coupled with monoclinic β-AgVO3 as p-n heterojunction for photocatalytic hydrogen evolution
Molecular Catalysis ( IF 4.6 ) Pub Date : 2021-08-25 , DOI: 10.1016/j.mcat.2021.111828
Kaicheng Yang 1 , Tianxia Liu 1 , Zhiliang Jin 1
Affiliation  

In this study, 3D mesoporous ultra-thin graphite carbon nitride (UCN) was successfully prepared using a simple hydrothermal pretreatment route and annealing step. The β-AgVO3 nanorods prepared by the hydrothermal method were uniformly anchored into the UCN network, and a novel type of UCN/β-AgVO3 p-n heterojunction photocatalyst was synthesized. The porous structure not only provides more surface active sites for hydrogen production, but also facilitates mass transfer at the contact interface between UCN and β-AgVO3. UV–Vis diffuse reflectance spectroscopy and fluorescence tests showed that UCN/β-AgVO3 exhibits excellent visible light trapping ability and broadened spectral absorption range, extending the life of photoinduced carriers. The results of photoelectric chemistry tests revealed that the composite material has more effective charge separation efficiency and greatly reduces the hydrogen evolution overpotential. The overall structure effectively promotes the utilization of photosensitizer and sacrificial agents, and achieves excellent hydrogen evolution efficiency. This work provides a feasible strategy for the rational design of binary synergistic photocatalytic systems with porous nanomaterials as the core.



中文翻译:

3D 介孔超薄 g-C3N4 与单斜晶 β-AgVO3 耦合作为 pn 异质结用于光催化析氢

在这项研究中,使用简单的水热预处理路线和退火步骤成功制备了 3D 介孔超薄石墨碳氮化物 (UCN)。将水热法制备的β-AgVO 3纳米棒均匀锚定在UCN网络中,合成了新型UCN/β-AgVO 3 pn异质结光催化剂。多孔结构不仅为制氢提供了更多的表面活性位点,而且还促进了 UCN 和 β-AgVO 3之间的接触界面处的传质。UV-Vis 漫反射光谱和荧光测试表明 UCN/β-AgVO 3表现出优异的可见光捕获能力和拓宽的光谱吸收范围,延长了光生载流子的寿命。光电化学测试结果表明,该复合材料具有更有效的电荷分离效率,大大降低了析氢过电位。整体结构有效促进了光敏剂和牺牲剂的利用,实现了优异的析氢效率。该工作为合理设计以多孔纳米材料为核心的二元协同光催化体系提供了可行的策略。

更新日期:2021-08-25
down
wechat
bug