当前位置: X-MOL 学术Comput. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A complex network theoretic approach for interdependence investigation: An application to radionuclide behavior in the subsurface
Computers & Geosciences ( IF 4.2 ) Pub Date : 2021-08-24 , DOI: 10.1016/j.cageo.2021.104913
Brinda Lakshmi Narayanan 1 , Ahmed Yosri 1 , Mohamed Ezzeldin 1 , Wael El-Dakhakhni 1 , Sarah Dickson-Anderson 1
Affiliation  

The failure of uranium mine tailings dams results in the infiltration and spreading of tailings in the subsurface. The fate and transport of radionuclides in the subsurface depends on several confounding, complex interdependent factors that describe the elements of the integrated system (i.e., meteorological; hydrological; hydrogeological; and, soil, groundwater, and mine tailings chemistry). The factors describing the integrated system have typically been investigated independently; however, their interdependence and resulting collective influence on the subsurface migration of radionuclides are yet to be explored. The current study develops a complex network theoretical approach to analyze these interdependencies. In this respect, a network of factors (NoF) was developed, and its characteristics (e.g., diameter, density, characteristic pathlength, average clustering coefficient, and factor centrality measures) were evaluated to determine the importance of considering these interdependencies when developing radionuclide fate and transport models. A sensitivity analysis was subsequently performed on the NoF to characterize the propagation of uncertainty associated with the factors in the NoF through a fate and transport model. The sensitivity analysis indicated that microorganisms present in the soil and mine tailings, fraction of organic carbon in the soil matrix, infiltration, and transmissivity must be well characterized (i.e., to minimize their uncertainty) when developing an integrated subsurface radionuclide fate and transport model, as uncertainty in these parameters will be amplified in the model output. The NoF developed in this study can be used to allocate data collection resources strategically in order to minimizing uncertainty in fate and transport models. This improves the reliability of fate and transport models, and ultimately leads to better management and remediation strategies to mitigate impacts from UMTD failures.



中文翻译:

用于相互依赖调查的复杂网络理论方法:在地下放射性核素行为的应用

铀矿尾矿坝的破坏导致尾矿在地下渗透和扩散。放射性核素在地下的归宿和迁移取决于描述综合系统要素(即气象、水文、水文地质以及土壤、地下水和尾矿尾矿化学)的几个混杂的、复杂的相互依赖的因素。描述集成系统的因素通常是独立研究的;然而,它们之间的相互依存关系以及由此产生的对放射性核素地下迁移的集体影响尚待探索。当前的研究开发了一种复杂的网络理论方法来分析这些相互依赖性。在这方面,开发了一个因子网络 (NoF) 及其特性(例如,直径、密度、特征路径长度、平均聚类系数和因子中心性度量)进行评估,以确定在开发放射性核素归宿和传输模型时考虑这些相互依赖性的重要性。随后对 NoF 进行了敏感性分析,以通过命运和传输模型表征与 NoF 中的因素相关的不确定性的传播。敏感性分析表明,在开发综合地下放射性核素归宿和传输模型时,必须很好地表征土壤和尾矿中存在的微生物、土壤基质中有机碳的比例、渗透率和透射率(即,尽量减少其不确定性),因为这些参数的不确定性将在模型输出中被放大。本研究中开发的 NoF 可用于战略性地分配数据收集资源,以最大限度地减少命运和运输模型的不确定性。这提高了命运和传输模型的可靠性,并最终导致更好的管理和补救策略,以减轻 UMTD 故障的影响。

更新日期:2021-08-29
down
wechat
bug