当前位置: X-MOL 学术Ain Shams Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hartmann boundary layer in peristaltic flow for viscoelastic fluid: Existence
Ain Shams Engineering Journal ( IF 6.0 ) Pub Date : 2021-08-24 , DOI: 10.1016/j.asej.2021.08.001
Aamir Ali 1 , M. Awais 1 , A. Al-Zubaidi 2 , S. Saleem 2 , D.N. Khan Marwat 3
Affiliation  

This paper addresses the peristaltic flow phenomenon for non-Newtonian Jeffrey fluid inside an asymmetric channel subject to large magnetic field. The governing boundary value problem is approximated under the long wavelengths and small Reynolds number assumptions. Asymptotic approximation of the boundary value problem is made for large magnetic field. The resulting differential equation turns out to be singular boundary value problem which is solved for the velocity field using asymptotic analysis and higher order matching technique. The boundary layer regions are determined where the magnetic field dominates the viscous force. The main objective of this study is to discuss the different situations arising in analytical solutions calculated with the help of asymptotic analysis, under the effects of strong and weak magnetic field. The strong magnetic field gives rise to Hartmann boundary layer, which is investigated analytically to understand the role of magnetic field on the velocity filed in the boundary layer regions for peristalsis transport of rheological fluids in channels. It is noticed that the boundary layer velocity has inverse relation with the magnetic field parameter. Another significant consequence of this study is to reduce the boundary layer by employing strong magnetic field and that the velocity in the core of the channel due to peristalsis becomes uniform. The outcomes of magnetic field in peristaltic motion for Jeffrey fluid can be helpful in understanding the transport phenomena in human physiological systems.



中文翻译:

粘弹性流体蠕动流中的哈特曼边界层:存在

本文讨论了非牛顿杰弗里流体在大磁场作用下的非对称通道内的蠕动流动现象。在长波长和小雷诺数假设下近似控制边界值问题。对大磁场进行边界值问题的渐近逼近。所得微分方程结果是奇异边值问题,该问题是使用渐近分析和高阶匹配技术针对速度场求解的。边界层区域被确定为磁场支配粘性力的地方。本研究的主要目的是讨论在强磁场和弱磁场的影响下,在渐近分析的帮助下计算出的解析解中出现的不同情况。强磁场产生了 Hartmann 边界层,对其进行了分析研究,以了解磁场对边界层区域中速度场对通道中流变流体蠕动传输的作用。注意到边界层速度与磁场参数成反比。这项研究的另一个重要结果是通过使用强磁场来减少边界层,并且由于蠕动导致通道核心的速度变得均匀。Jeffrey 流体蠕动运动中磁场的结果有助于理解人类生理系统中的传输现象。对其进行分析研究,以了解磁场对边界层区域中速度场的作用,以促进通道中流变流体的蠕动传输。注意到边界层速度与磁场参数成反比。这项研究的另一个重要结果是通过使用强磁场来减少边界层,并且由于蠕动导致通道核心的速度变得均匀。Jeffrey 流体蠕动运动中磁场的结果有助于理解人类生理系统中的传输现象。对其进行分析研究,以了解磁场对边界层区域中速度场的作用,以促进通道中流变流体的蠕动传输。注意到边界层速度与磁场参数成反比。这项研究的另一个重要结果是通过使用强磁场来减少边界层,并且由于蠕动导致通道核心的速度变得均匀。Jeffrey 流体蠕动运动中磁场的结果有助于理解人类生理系统中的传输现象。这项研究的另一个重要结果是通过使用强磁场来减少边界层,并且由于蠕动导致通道核心的速度变得均匀。Jeffrey 流体蠕动运动中磁场的结果有助于理解人类生理系统中的传输现象。这项研究的另一个重要结果是通过使用强磁场来减少边界层,并且由于蠕动导致通道核心的速度变得均匀。Jeffrey 流体蠕动运动中磁场的结果有助于理解人类生理系统中的传输现象。

更新日期:2021-08-24
down
wechat
bug