当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Torque Ripple Suppression of PMSM Using Fractional-Order Vector Resonant and Robust Internal Model Control
IEEE Transactions on Transportation Electrification ( IF 7.2 ) Pub Date : 2021-01-20 , DOI: 10.1109/tte.2021.3053063
Mingfei Huang , Yongting Deng , Hongwen Li , Jianli Wang

Periodic torque ripples caused by current harmonics seriously affect the control accuracy of the Permanent magnet synchronous motors (PMSMs). A conventional approach to reducing current harmonics is the use of a proportional–integral resonant controller in the current loop. Nonetheless, harmonics can still cause steady-state errors. Furthermore, the PI-based control structure is sensitive to parameter mismatches and uncertain disturbances, which will decrease the tracking performance of the current loop. To overcome the drawbacks of the traditional control method, a hybrid robust resonant control strategy was developed in this study. First, a vector resonant controller was enhanced by introducing fractional-order calculus (denoted as the fractional-order vector resonant (FOVR) controller in this article) so that it can suppress harmonic components more effectively. Then, a robust internal mode controller (Robust-IMC) was designed to improve the robustness and dynamic response and further reduce the current harmonics. Finally, by combining the FOVR controller and Robust-IMC, a control method—FOVR-Robust-IMC was designed as the robust control law to ensure satisfactory robustness and harmonics suppression performance. Meanwhile, the stability and robust stability of the developed control strategy were also analyzed. The results demonstrated that the proposed FOVR-Robust-IMC effectively reduced the harmonic components and improved the robustness to parameter mismatch.

中文翻译:

使用分数阶矢量谐振和鲁棒内部模型控制的 PMSM 转矩脉动抑制

电流谐波引起的周期性转矩脉动严重影响永磁同步电机(PMSM)的控制精度。减少电流谐波的传统方法是在电流回路中使用比例积分谐振控制器。尽管如此,谐波仍会导致稳态误差。此外,基于PI的控制结构对参数不匹配和不确定扰动很敏感,这会降低电流环的跟踪性能。为了克服传统控制方法的缺点,本研究开发了一种混合鲁棒谐振控制策略。首先,通过引入分数阶微积分(在本文中表示为分数阶矢量谐振 (FOVR) 控制器)增强了矢量谐振控制器,使其能够更有效地抑制谐波分量。然后,设计了稳健的内部模式控制器(Robust-IMC)以提高稳健性和动态响应并进一步降低电流谐波。最后,结合FOVR控制器和Robust-IMC,设计了一种控制方法——FOVR-Robust-IMC作为鲁棒控制律,以确保令人满意的鲁棒性和谐波抑制性能。同时,还分析了所开发控制策略的稳定性和鲁棒稳定性。结果表明,所提出的 FOVR-Robust-IMC 有效地减少了谐波分量并提高了对参数失配的鲁棒性。然后,设计了稳健的内部模式控制器(Robust-IMC)以提高稳健性和动态响应并进一步降低电流谐波。最后,结合FOVR控制器和Robust-IMC,设计了一种控制方法——FOVR-Robust-IMC作为鲁棒控制律,以确保令人满意的鲁棒性和谐波抑制性能。同时,还分析了所开发控制策略的稳定性和鲁棒稳定性。结果表明,所提出的 FOVR-Robust-IMC 有效地减少了谐波分量并提高了对参数失配的鲁棒性。然后,设计了稳健的内部模式控制器(Robust-IMC)以提高稳健性和动态响应并进一步降低电流谐波。最后,结合FOVR控制器和Robust-IMC,设计了一种控制方法——FOVR-Robust-IMC作为鲁棒控制律,以确保令人满意的鲁棒性和谐波抑制性能。同时,还分析了所开发控制策略的稳定性和鲁棒稳定性。结果表明,所提出的 FOVR-Robust-IMC 有效地减少了谐波分量并提高了对参数失配的鲁棒性。一种控制方法——FOVR-Robust-IMC被设计为鲁棒控制律,以确保令人满意的鲁棒性和谐波抑制性能。同时,还分析了所开发控制策略的稳定性和鲁棒稳定性。结果表明,所提出的 FOVR-Robust-IMC 有效地减少了谐波分量并提高了对参数失配的鲁棒性。一种控制方法——FOVR-Robust-IMC被设计为鲁棒控制律,以确保令人满意的鲁棒性和谐波抑制性能。同时,还分析了所开发控制策略的稳定性和鲁棒稳定性。结果表明,所提出的 FOVR-Robust-IMC 有效地减少了谐波分量并提高了对参数失配的鲁棒性。
更新日期:2021-01-20
down
wechat
bug