当前位置: X-MOL 学术J. Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diophantine triples and K3 surfaces
Journal of Number Theory ( IF 0.7 ) Pub Date : 2021-08-24 , DOI: 10.1016/j.jnt.2021.07.009
Matija Kazalicki 1 , Bartosz Naskręcki 2
Affiliation  

A Diophantine m-tuple with elements in the field K is a set of m non-zero (distinct) elements of K with the property that the product of any two distinct elements is one less than a square in K. Let X:(x21)(y21)(z21)=k2, be an affine variety over K. Its K-rational points parametrize Diophantine triples over K such that the product of the elements of the triple that corresponds to the point (x,y,z,k)X(K) is equal to k. We denote by X the projective closure of X and for a fixed k by Xk a variety defined by the same equation as X.

In this paper, we try to understand what can the geometry of varieties Xk, X and X tell us about the arithmetic of Diophantine triples.

First, we prove that the variety X is birational to P3 which leads us to a new rational parametrization of the set of Diophantine triples.

Next, specializing to finite fields, we find a correspondence between a K3 surface Xk for a given kFp× in the prime field Fp of odd characteristic and an abelian surface which is a product of two elliptic curves Ek×Ek where Ek:y2=x(k2(1+k2)3+2(1+k2)2x+x2). We derive an explicit formula for N(p,k), the number of Diophantine triples over Fp with the product of elements equal to k. Moreover, we show that the variety X admits a fibration by rational elliptic surfaces and from it we derive the formula for the number of points on X over an arbitrary finite field Fq. Using it we reprove the formula for the number of Diophantine triples over Fq from [DK21].

Curiously, from the interplay of the two (K3 and rational) fibrations of X, we derive the formula for the second moment of the elliptic surface Ek (and thus confirming Steven J. Miller's Bias conjecture in this particular case) which we describe in terms of Fourier coefficients of a rational newform generating S4(Γ0(8)).

Finally, in the Appendix, Luka Lasić defines circular Diophantine m-tuples, and describes the parametrization of these sets. For m=3 this method provides an elegant parametrization of Diophantine triples.



中文翻译:

丢番图三元组和 K3 表面

K中具有元素的丢番图m元组是Km个非零(不同)元素的集合,其属性是任何两个不同元素的乘积比K中的平方小一。让X(X2-1)(是的2-1)(z2-1)=ķ2, 是K上的仿射变体。它的K有理点参数化了丢番图对K的三元组,使得对应于该点的三元组元素的乘积(X,是的,z,ķ)X(ķ)等于k ​​。我们表示XX的射影闭包,对于一个固定的kXķ由与X相同的方程定义的变体。

在本文中,我们试图了解品种的几何形状Xķ, XX告诉我们丢番图三元组的算术。

首先,我们证明多样性X是双理性的3这导致我们对丢番图三元组进行新的理性参数化。

接下来,专门研究有限域,我们找到了 K3 曲面之间的对应关系Xķ对于给定的ķFp×在主要领域Fp具有奇特征和由两条椭圆曲线乘积的阿贝尔曲面ķ×ķ在哪里ķ是的2=X(ķ2(1+ķ2)3+2(1+ķ2)2X+X2). 我们推导出一个明确的公式ñ(p,ķ),丢番图的数量增加了三倍Fp元素的乘积等于k ​​。此外,我们证明了多样性X允许有理椭圆表面的纤维化,并由此推导出上点数的公式X在任意有限域上Fq. 使用它,我们重新验证了丢番图三倍数的公式Fq来自 [DK21]。

奇怪的是,从两个(K3 和有理)纤维的相互作用X,我们推导出椭圆曲面二阶矩的公式ķ(并因此在这种特殊情况下证实了 Steven J. Miller 的偏差猜想),我们用有理新形式生成的傅立叶系数来描述它小号4(Γ0(8)).

最后,在附录中,Luka Lasić 定义了圆形丢番图m元组,并描述了这些集合的参数化。为了=3此方法提供了丢番图三元组的优雅参数化。

更新日期:2021-08-24
down
wechat
bug