当前位置: X-MOL 学术Engineering › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells
Engineering ( IF 10.1 ) Pub Date : 2021-08-24 , DOI: 10.1016/j.eng.2021.04.028
Qiangqiang Zhang 1, 2 , Quan Zhou 1, 2, 3 , Yaxiang Lu 1, 4 , Yuanjun Shao 1, 2 , Yuruo Qi 1, 2 , Xingguo Qi 3 , Guiming Zhong 5 , Yong Yang 6 , Liquan Chen 1, 2 , Yong-Sheng Hu 1, 2, 3
Affiliation  

The low ionic conductivity of solid-state electrolytes (SSEs) and the inferior interfacial reliability between SSEs and solid-state electrodes are two urgent challenges hindering the application of solid-state sodium batteries (SSSBs). Herein, sodium (Na) super ionic conductor (NASICON)-type SSEs with a nominal composition of Na3+2xZr2–xMgxSi2PO12 were synthesized using a facile two-step solid-state method, among which Na3.3Zr1.85Mg0.15Si2PO12 (x = 0.15, NZSP-Mg0.15) showed the highest ionic conductivity of 3.54 mS∙cm−1 at 25 °C. By means of a thorough investigation, it was verified that the composition of the grain boundary plays a crucial role in determining the total ionic conductivity of NASICON. Furthermore, due to a lack of examination in the literature regarding whether NASICON can provide enough anodic electrochemical stability to enable high-voltage SSSBs, we first adopted a high-voltage Na3(VOPO4)2F (NVOPF) cathode to verify its compatibility with the optimized NZSP-Mg0.15 SSE. By comparing the electrochemical performance of cells with different configurations (low-voltage cathode vs high-voltage cathode, liquid electrolytes vs SSEs), along with an X-ray photoelectron spectroscopy evaluation of the after-cycled NZSP-Mg0.15, it was demonstrated that the NASICON SSEs are not stable enough under high voltage, suggesting the importance of investigating the interface between the NASICON SSEs and high-voltage cathodes. Furthermore, by coating NZSP-Mg0.15 NASICON powder onto a polyethylene (PE) separator (PE@NASICON), a 2.42 A∙h non-aqueous Na-ion cell of carbon|PE@NASICON|NaNi2/9Cu1/9Fe1/3Mn1/3O2 was found to deliver an excellent cycling performance with an 88% capacity retention after 2000 cycles, thereby demonstrating the high reliability of SSEs with NASICON-coated separator.



中文翻译:

NASICON 电解质的改性及其在真实钠离子电池中的应用

固态电解质(SSEs)的低离子电导率和SSEs与固态电极之间较差的界面可靠性是阻碍固态钠电池(SSSBs)应用的两大紧迫挑战。在此,采用简便的两步固相法合成了标称组成为 Na 3+2 x Zr 2– x Mg x Si 2 PO 12的钠 (Na) 超离子导体 (NASICON) 型 SSE ,其中Na 3.3 Zr 1.85 Mg 0.15 Si 2 PO 12 ( x  = 0.15, NZSP-Mg 0.15)在 25 °C 下显示出 3.54 mS∙cm -1的最高离子电导率。通过深入研究,证实晶界的成分在决定 NASICON 的总离子电导率中起着至关重要的作用。此外,由于文献中缺乏关于 NASICON 是否可以提供足够的阳极电化学稳定性来实现高压 SSSB,我们首先采用高压 Na 3 (VOPO 4 ) 2 F (NVOPF) 正极来验证其兼容性使用优化的 NZSP-Mg 0.15上证所。通过比较具有不同配置(低压阴极与高压阴极、液体电解质与 SSE)的电池的电化学性能,以及对循环后的 NZSP-Mg 0.15进行 X 射线光电子能谱评估,证明了NASICON SSEs 在高压下不够稳定,这表明研究 NASICON SSEs 和高压阴极之间的界面的重要性。此外,通过将 NZSP-Mg 0.15 NASICON 粉末涂覆在聚乙烯 (PE) 隔板 (PE@NASICON) 上,形成了一个 2.42 A∙h 的碳|PE@NASICON|NaNi 2/9 Cu 1/9非水钠离子电池铁1/31/3 O 2被发现具有出色的循环性能,在 2000 次循环后具有 88% 的容量保持率,从而证明了具有 NASICON 涂层隔膜的 SSE 的高可靠性。

更新日期:2021-08-24
down
wechat
bug