当前位置: X-MOL 学术Energy Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bionic coupling design and aerodynamic analysis of horizontal axis wind turbine blades
Energy Science & Engineering ( IF 3.5 ) Pub Date : 2021-08-21 , DOI: 10.1002/ese3.953
Kun Chen 1 , Wei‐wei Yao 1 , Jian‐hui Wei 1 , Rui‐biao Gao 1 , Yi‐xiao Li 1
Affiliation  

With millions of years of evolution, owls have developed many excellent characteristics in terms of their flight. The speed of an owl in flight is similar to the relative speed of the blade of a small wind turbine with respect to air. Therefore, the owl wing airfoil is selected as the design airfoil of the wind turbine blade to reduce the flow separation under low Reynolds number. In this study, we analyze an owl wing-section airfoil and the non-smooth leading-edge shape of an owl's wing, and implement an orthogonal optimum design to optimize the wavelength and amplitude of the non-smooth leading edge. We extract the cross-sectional features of the airfoil and the non-smooth leading-edge shape of the wing. Based on the orthogonal optimum design results, we determine the optimal combination of the wavelength, amplitude, and airfoil, and then design a horizontal-axis wind turbine blade through bionic coupling. The flow field at different tip speed ratios (TSRs) is simulated using the urn:x-wiley:20500505:media:ese3953:ese3953-math-0001 turbulence model at the rated wind speed. The results show that the power coefficient (urn:x-wiley:20500505:media:ese3953:ese3953-math-0002) of the bionic wind turbine at a high tip speed ratio is 17.7% higher than that of the standard type. Furthermore, we analyze the operation of the turbine at TSRs of 2 and 5. At a high TSR, the leading edge bulge of the bionic wind turbine blade can change the flow direction distribution of the airflow on the blade surface, make the airflow to adhere to the suction surface, and then reduce the stall area on the suction surface of the blade. Thus, the wind turbine produces higher torque, thereby generating higher power.

中文翻译:

水平轴风力机叶片仿生耦合设计与气动分析

经过数百万年的进化,猫头鹰在飞行方面已经形成了许多优秀的特征。猫头鹰在飞行中的速度类似于小型风力涡轮机的叶片相对于空气的相对速度。因此,选择猫头鹰翼型作为风力机叶片的设计翼型,以减少低雷诺数下的流动分离。在这项研究中,我们分析了猫头鹰翼截面翼型和猫头鹰翼的非光滑前缘形状,并实施正交优化设计以优化非光滑前缘的波长和幅度。我们提取翼型的横截面特征和机翼的非光滑前缘形状。根据正交优化设计结果,确定波长、幅度和翼型的最佳组合,然后通过仿生耦合设计水平轴风力涡轮机叶片。不同叶尖速比 (TSR) 下的流场使用urn:x-wiley:20500505:media:ese3953:ese3953-math-0001额定风速下的湍流模型。结果表明,urn:x-wiley:20500505:media:ese3953:ese3953-math-0002高叶尖速比下仿生风力机的功率系数( )比标准型高17.7%。此外,我们分析了涡轮机在 TSR 为 2 和 5 时的运行情况。在高 TSR 下,仿生风力涡轮机叶片的前缘凸起可以改变叶片表面气流的流向分布,使气流粘附到吸力面,然后减小叶片吸力面上的失速面积。因此,风力涡轮机产生更高的扭矩,从而产生更高的功率。
更新日期:2021-10-03
down
wechat
bug