当前位置: X-MOL 学术Exp. Brain Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of motion speed perception from infancy to early adulthood: a high-density EEG study of simulated forward motion through optic flow
Experimental Brain Research ( IF 1.7 ) Pub Date : 2021-08-21 , DOI: 10.1007/s00221-021-06195-5
Stefania Rasulo 1 , Kenneth Vilhelmsen 1 , F R Ruud van der Weel 1 , Audrey L H van der Meer 1
Affiliation  

This study investigated evoked and oscillatory brain activity in response to forward visual motion at three different ecologically valid speeds, simulated through an optic flow pattern consisting of a virtual road with moving poles at either side of it. Participants were prelocomotor infants at 4–5 months, crawling infants at 9–11 months, primary school children at 6 years, adolescents at 12 years, and young adults. N2 latencies for motion decreased significantly with age from around 400 ms in prelocomotor infants to 325 ms in crawling infants, and from 300 and 275 ms in 6- and 12-year-olds, respectively, to 250 ms in adults. Infants at 4–5 months displayed the longest latencies and appeared unable to differentiate between motion speeds. In contrast, crawling infants at 9–11 months and 6-year-old children differentiated between low, medium and high speeds, with shortest latency for low speed. Adolescents and adults displayed similar short latencies for the three motion speeds, indicating that they perceived them as equally easy to detect. Time–frequency analyses indicated that with increasing age, participants showed a progression from low- to high-frequency desynchronized oscillatory brain activity in response to visual motion. The developmental differences in motion speed perception are interpreted in terms of a combination of neurobiological development and increased experience with self-produced locomotion. Our findings suggest that motion speed perception is not fully developed until adolescence, which has implications for children’s road traffic safety.



中文翻译:

从婴儿期到成年早期运动速度感知的发展:通过光流模拟向前运动的高密度脑电图研究

这项研究调查了以三种不同的生态有效速度响应前向视觉运动的诱发性和振荡性大脑活动,通过由两侧有移动极点的虚拟道路组成的光流模式进行模拟。参与者是 4-5 个月的运动前婴儿、9-11 个月的爬行婴儿、6 岁的小学生、12 岁的青少年和年轻人。运动的 N2 潜伏期随着年龄的增长而显着下降,从运动前婴儿的约 400 毫秒到爬行婴儿的 325 毫秒,从 6 岁和 12 岁的 300 毫秒和 275 毫秒,到成人的 250 毫秒。4-5 个月大的婴儿表现出最长的潜伏期,并且似乎无法区分运动速度。相比之下,9-11 个月的爬行婴儿和 6 岁的儿童在低、中高速,低速时延迟最短。青少年和成年人对这三种运动速度表现出相似的短延迟,这表明他们认为它们同样容易被检测到。时频分析表明,随着年龄的增长,参与者表现出从低频到高频的非同步振荡大脑活动的进展,以响应视觉运动。运动速度感知的发育差异被解释为神经生物学发育和自我产生运动的增加经验的组合。我们的研究结果表明,运动速度感知直到青春期才完全发展,这对儿童的道路交通安全有影响。青少年和成年人对这三种运动速度表现出相似的短延迟,这表明他们认为它们同样容易被检测到。时频分析表明,随着年龄的增长,参与者表现出从低频到高频的非同步振荡大脑活动的进展,以响应视觉运动。运动速度感知的发育差异被解释为神经生物学发育和自我产生运动的增加经验的组合。我们的研究结果表明,运动速度感知直到青春期才完全发展,这对儿童的道路交通安全有影响。青少年和成年人对这三种运动速度表现出相似的短延迟,这表明他们认为它们同样容易被检测到。时频分析表明,随着年龄的增长,参与者表现出从低频到高频的非同步振荡大脑活动的进展,以响应视觉运动。运动速度感知的发育差异被解释为神经生物学发育和自我产生运动的增加经验的组合。我们的研究结果表明,运动速度感知直到青春期才完全发展,这对儿童的道路交通安全有影响。参与者展示了响应视觉运动的从低频到高频的去同步振荡大脑活动的进展。运动速度感知的发育差异被解释为神经生物学发育和自我产生运动的增加经验的组合。我们的研究结果表明,运动速度感知直到青春期才完全发展,这对儿童的道路交通安全有影响。参与者展示了响应视觉运动的从低频到高频的去同步振荡大脑活动的进展。运动速度感知的发育差异被解释为神经生物学发育和自我产生运动的增加经验的组合。我们的研究结果表明,运动速度感知直到青春期才完全发展,这对儿童的道路交通安全有影响。

更新日期:2021-08-23
down
wechat
bug