当前位置: X-MOL 学术J. Ind. Inf. Integr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of a multi-directional wire arc additive manufacturing system with an automated process planning algorithm
Journal of Industrial Information Integration ( IF 10.4 ) Pub Date : 2021-08-21 , DOI: 10.1016/j.jii.2021.100265
Lei Yuan 1, 2 , Zengxi Pan 2 , Joseph Polden 2 , Donghong Ding 1 , Stephen van Duin 2 , Huijun Li 2
Affiliation  

With the increasing demand for high productivity and low cost, the advanced manufacturing system has become more complex. It is challenging to develop an advanced manufacturing system by engineers or researchers from manufacturing engineering disciplines. To combine knowledge and skills from two or more disciplines, interdisciplinary engineering (IDE), from industrial information integration, was carried out as a promising subject for further developing advanced manufacturing systems. Recently, Wire arc additive manufacturing (WAAM) technology has attracted attention from industrial sectors due to its capability to fabricate medium-to-large scale components with low capital investment and high productivity. In addition, a variant of WAAM, called multi-directional WAAM techniques, has been developed for the direct fabrication of parts with overhanging features. The multi-directional approach can reduce the need for additional supporting structures, reducing (amongst other things) material costs, manufacturing time, and post-process machining requirements. Although the multi-directional WAAM has a great potential for practical industrial use, the process planning also becomes more complex for developing an automated system for industrial use. This paper presents a novel automated processing planning algorithm and integrates with the automated robot offline programming (AOLP) engine and WAAM hardware. The proposed system aims at planning the multi-directional WAAM process automatically. The process planning algorithm consists of four key modules relating to a) robot motion planning, b) initial collision processing, c) layer sequence optimisation, and d) weld torch pose adjustment. In the first stage, the required robot motions to deposit each layer are obtained through an AOLP engine. Then a collision matrix is generated to guide later steps of the planning process from these robot motions. After this, layer sequence optimisation is performed to eliminate collision between the robotic system and the part. If collision still exists, adjustments to the torch pose are made to avoid the remaining collision. The final chapter of this paper demonstrates the effectiveness of the proposed system via a real-world case study, where a workpiece with overhanging features was fabricated.



中文翻译:

多方向电弧增材制造系统与自动化工艺规划算法的集成

随着对高生产率和低成本的需求不断增加,先进制造系统变得更加复杂。由制造工程学科的工程师或研究人员开发先进的制造系统具有挑战性。为了结合来自两个或多个学科的知识和技能,来自工业信息集成的跨学科工程 (IDE) 被作为进一步开发先进制造系统的有前途的学科而开展。最近,电弧增材制造 (WAAM) 技术因其能够以低资本投资和高生产率制造大中型组件而受到工业部门的关注。此外,WAAM 的一种变体,称为多向 WAAM 技术,已开发用于直接制造具有悬垂特征的零件。多向方法可以减少对额外支撑结构的需求,减少(除其他外)材料成本、制造时间和后处理加工要求。尽管多向 WAAM 在实际工业应用中具有巨大潜力,但开发工业用自动化系统的过程规划也变得更加复杂。本文提出了一种新颖的自动化处理规划算法,并与自动化机器人离线编程 (AOLP) 引擎和 WAAM 硬件集成。所提出的系统旨在自动规划多向 WAAM 过程。过程规划算法由四个关键模块组成,涉及 a) 机器人运动规划,b) 初始碰撞处理,c) 层顺序优化,以及 d) 焊枪姿态调整。在第一阶段,通过 AOLP 引擎获得沉积每一层所需的机器人运动。然后生成一个碰撞矩阵,以根据这些机器人运动指导规划过程的后续步骤。在此之后,执行层序列优化以消除机器人系统和零件之间的碰撞。如果碰撞仍然存在,则调整割炬姿势以避免剩余碰撞。本文的最后一章通过实际案例研究证明了所提出系统的有效性,其中制造了具有悬垂特征的工件。然后生成一个碰撞矩阵,以根据这些机器人运动指导规划过程的后续步骤。在此之后,执行层序列优化以消除机器人系统和零件之间的碰撞。如果碰撞仍然存在,则调整割炬姿势以避免剩余碰撞。本文的最后一章通过实际案例研究证明了所提出系统的有效性,其中制造了具有悬垂特征的工件。然后生成一个碰撞矩阵,以根据这些机器人运动指导规划过程的后续步骤。在此之后,执行层序列优化以消除机器人系统和零件之间的碰撞。如果碰撞仍然存在,则调整割炬姿势以避免剩余碰撞。本文的最后一章通过实际案例研究证明了所提出系统的有效性,其中制造了具有悬垂特征的工件。

更新日期:2021-08-21
down
wechat
bug