当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comprehensive study on low-temperature oxidation chemistry of cyclohexane. I. Conformational analysis and theoretical study of first and second oxygen addition
Combustion and Flame ( IF 5.8 ) Pub Date : 2021-08-21 , DOI: 10.1016/j.combustflame.2021.111658
Jiabiao Zou 1 , Yuyang Li 1 , Lili Ye 2 , Hanfeng Jin 3
Affiliation  

To understand the low-temperature oxidation chemistry of cyclohexane, conformational analysis and theoretical study of the first and second oxygen addition are performed using quantum chemical calculations and kinetic calculations. Pressure- and temperature-dependent rate constants and branching ratios for major reaction channels are determined with RRKM/master-equation simulations over 298–2000 K and 0.01–1000 bar. The theoretical results indicate that the rapid inversion-topomerization processes facilitate fast equilibrium between axial and equatorial conformers. This can greatly counterbalance the influence of initial positions of side-chain groups in ROO, QOOH, cis-OOγQOOH and trans-OOγQOOH conformers. Conformational effects are found to be influential on the chain branching reaction sequences in second oxygen addition. The carbon ring prevents the conventional intramolecular H-transfer of cis-OOγQOOH conformers to yield ketohydroperoxides, as well as the inversion-topomerization from cis-OOγQOOH conformer to trans-OOγQOOH conformers. cis-OOγQOOH conformers mainly undergo alternative isomerization channel (cis-OOγQOOH→γP(OOH)2→alkenylhydroperoxides+OH→oxy radical+OH+OH), while trans-OOγQOOH conformers have both conventional isomerization channel (trans-OOγQOOH→ketohydroperoxides+OH→oxy radical+OH+OH) and alternative isomerization channel (trans-OOγQOOH→γP(OOH)2→alkenylhydroperoxides+OH→oxy radical+OH+OH). Kinetic calculation results also support the application of the thumb rule widely used in acyclic alkane oxidation that the rate constant of QOOH+O2 is roughly half of that of R+O2 in cyclic alkane oxidation, while it is indicated that estimating the rate constants of OOQOOH reactions from similar reactions of ROO may cause significant uncertainties.



中文翻译:

环己烷低温氧化化学综合研究[J]. 一、二次加氧的构象分析与理论研究

为了理解环己烷的低温氧化化学,使用量子化学计算和动力学计算进行第一次和第二次加氧的构象分析和理论研究。主要反应通道的压力和温度相关速率常数和支化率是通过 298-2000 K 和 0.01-1000 bar 的 RRKM/主方程模拟确定的。理论结果表明,快速的反转-拓扑异构化过程促进了轴向和赤道构象异构体之间的快速平衡。这可以极大地抵消 ROO、QOOH、顺式-OOγQOOH 和反式 OOγQOOH 构象异构体中侧链基团初始位置的影响。发现构象效应对第二次加氧中的链支化反应序列有影响。碳环阻止了顺式-OOγQOOH 构象异构体的常规分子内氢转移以产生酮氢过氧化物,以及从顺式-OOγQOOH 构象异构体到反式 OOγQOOH 构象异构体的倒转拓扑。cis-OOγQOOH构象异构体主要经历交替异构化通道(cis-OOγQOOH→γP(OOH)2 →链烯基氢过氧化物+OH→氧自由基+OH+OH),而反式-OOγQOOH构象异构体既有常规异构化通道(反式-OOγQOOH→酮氢过氧化物+OH→氧自由基+OH+OH),也有替代异构化通道(反式-OOγQOOH→γP) (OOH) 2 →烯基氢过氧化物+OH→氧基+OH+OH)。动力学计算结果也支持在无环烷烃氧化中广泛使用的拇指法则的应用,即在环烷烃氧化中,QOOH+O 2的速率常数大约是 R+O 2速率常数的一半,同时表明估计速率常数来自 ROO 的类似反应的 OOQOOH 反应可能会导致显着的不确定性。

更新日期:2021-08-21
down
wechat
bug