当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames
Combustion and Flame ( IF 5.8 ) Pub Date : 2021-08-21 , DOI: 10.1016/j.combustflame.2021.111647
Garrett J. Marshall 1 , Patrick S. Walsh 2 , Carl A. Hall 1 , Sukesh Roy 2 , Robert W. Pitz 1
Affiliation  

Femtosecond, Two-photon Absorption Laser Induced Fluorescence (fs-TALIF) corrected for collisional quenching with Raman scattering is used to capture spatially resolved atomic oxygen profiles in lean premixed, hydrogen cellular tubular flames. This method has allowed comparisons of number density and O-atom concentration distributions in flames of variable stretch rates in a manner similar to that previously performed on the minor flame species H and OH. As stretch rate increases, the radii of peak O-atom in the cells decrease while O-atom concentrations remain relatively unaffected. This differs from non-cellular flame data where increasing stretch rate increases minor species number densities. Three chemical mechanisms are employed to perform direct numerical simulations of the O-atom profiles in the tubular flames and are found to be in close agreement with one another. For N2-diluted flames, the simulations predict O-atom number densities within the uncertainty of the data for the cellular region but over-predict the O-atom number densities in the dearth region of the 2D flames. Additionally, simulated O-atom concentrations contradict the trend of the data and increase with stretch rate. Changing the diluent from N2 to CO2 lowers the peak concentrations of atomic oxygen as CO2 becomes reactive at flame temperatures. This allows the CO+O(+M)CO2(+M) reaction to consume atomic oxygen. Flames diluted with carbon dioxide caused the model to over-predict the O-atom concentration in these flames. This discrepancy is similar to past minor species measurements in cellular tubular flames though it does not occur in minor species profiles of non-cellular (1D), CO2-diluted tubular flames. The discrepancy could be caused by the simplifying relationships employed to convert the 3D geometry to 2D in the simulations.



中文翻译:

拉曼校正双光子吸收激光诱导预混氢中原子氧的荧光,蜂窝管状火焰

飞秒、双光子吸收激光诱导荧光 (fs-TALIF) 通过拉曼散射校正碰撞猝灭,用于捕获贫预混合氢细胞管状火焰中空间分辨的原子氧分布。这种方法允许以类似于先前对次要火焰物种 H 和 OH 执行的方式比较可变拉伸速率的火焰中的数密度和 O 原子浓度分布。随着拉伸速率的增加,细胞中峰值 O 原子的半径减小,而 O 原子浓度保持相对不受影响。这不同于非细胞火焰数据,其中增加拉伸速率会增加次要物种数量密度。三种化学机制被用来对管状火焰中的 O 原子轮廓进行直接数值模拟,并且发现彼此非常一致。对于 N2稀释的火焰,模拟预测了细胞区域数据不确定性内的 O 原子数密度,但高估了 2D 火焰缺乏区域的 O 原子数密度。此外,模拟的 O 原子浓度与数据趋势相矛盾并随拉伸速率增加。随着CO 2在火焰温度下变得具有反应性,将稀释剂从N 2改为CO 2降低了原子氧的峰值浓度。这允许二氧化碳+(+)2(+)反应消耗原子氧。用二氧化碳稀释的火焰导致模型高估了这些火焰中的 O 原子浓度。这种差异类似于过去在蜂窝管状火焰中的次要物种测量,尽管它不会出现在非蜂窝 (1D)、CO 2稀释的管状火焰的次要物种剖面中。这种差异可能是由模拟中用于将 3D 几何图形转换为 2D 的简化关系造成的。

更新日期:2021-08-21
down
wechat
bug